首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kind of organophilic clay, cotreated by methyl tallow bis‐2‐hydroxyethyl quaternary ammonium and epoxy resin into sodium montmorillonite (to form a strong interaction with polyamide 66 matrix), was prepared and used in preparing PA66/clay nanocomposites (PA66CN) via melt‐compounding method. Three different types of organic clays, CL30B–E00, CL30B–E12, and CL30B–E23, were used to study the effect of epoxy resin in PA66CN. The morphological, mechanical, and thermal properties have been studied using X‐ray diffraction, transmission electron microscopy (TEM), mechanical, and thermal analysis, respectively. TEM analysis of the nanocomposites shows that most of the silicate layers were exfoliated to individual layers and to some thin stacks containing a few layers. PA66CX–E00 and PA66CX–E12 had nearly exfoliated structures in agreement with the SAXS results, while PA66CX–E23 shows a coexistence of intercalated and exfoliated structures. The storage modulus of PA66 nanocomposites was higher than that of the neat PA66 in the whole range of tested temperature. On the other hand, the magnitude of the loss tangent peak in α‐ or β‐transition region decreased gradually with the increase in the clay loading. Multiple melting behavior in PA66 was also observed. Thermal stability more or less decreased with an increasing inorganic content. Young's modulus and tensile strength were enhanced by introducing organoclay. Among the three types of nanocomposites prepared, PA66CX–E12 showed the highest improvement in properties, while PA66CX–E23 showed properties inferior to that of PA66CX–E00 without epoxy resin. In conclusion, an optimum amount of epoxy resin is required to form the strong interaction with the amide group of PA66. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1711–1722, 2006  相似文献   

2.
BACKGROUND: In a polymer–metal sliding system, the formation and performance of the transfer film have important effects on the tribological behavior of the polymer. In order to reveal the wear mechanism of polyamide 66 (PA 66) and its composites consisting of styrene–(ethylene/butylene)–styrene triblock rubber grafted with maleic anhydride (SEBS‐g‐MA) particles and organoclay nano‐layers, the tribological behavior and transfer films of polyamide 66 and its composites were investigated under dry sliding. RESULTS: The incorporation of SEBS‐g‐MA rubber particles reduces the wear mass loss of PA 66, while the addition of organoclay nano‐layers increases the wear mass loss. The transfer films formed by neat PA 66 and PA 66/organoclay binary nanocomposite include a dark portion and bright portion. In the dark portion, the transfer film is thicker; in the bright portion, the steel ring surface is exposed. The transfer film formed by PA 66/SEBS‐g‐MA/organoclay ternary nanocomposite is thinner and more uniform than the transfer films formed by the other materials. CONCLUSION: When SEBS‐g‐MA rubber particles and organoclay nano‐layers are added simultaneously to PA 66, the wear resistance of PA 66 can be improved markedly. The main reason is that PA 66/SEBS‐g‐MA/organoclay ternary nanocomposite can form a thin and uniform transfer film on the steel ring surface. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Nanocomposites containing a thermoplastic blend and organophilic layered clay (organoclay) were produced by melt compounding. The blend composition was kept constant [polyamide 6 (PA6) 70 wt % + polypropylene (PP) 30 wt %], whereas the organoclay content was varied between 0 and 10 wt %. The mechanical properties of the nanocomposites were determined on injection‐molded specimens in both tensile and flexural loading. Highest strength values were observed at an organoclay content of 4 wt % for the blends. The flexural strength was superior to the tensile one, which was traced to the effect of the molding‐induced skin‐core structure. Increasing organoclay amount resulted in severe material embrittlement reflected in a drop of both strength and strain values. The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersion X‐ray analysis (EDX), and X‐ray diffraction (XRD). It was established that the organoclay is well dispersed (exfoliated) and preferentially embedded in the PA6 phase. Further, the exfoliation degree of the organoclay decreased with increasing organoclay content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 175–189, 2004  相似文献   

4.
PA6/蒙脱土熔融插层复合材料结构与性能分析   总被引:5,自引:0,他引:5  
通过熔融共混法插层复合制备了聚酰胺(PN)6/蒙脱土纳米复合材料,测试了力学性能并对不同蒙脱土含量的PA 6/蒙脱土纳米复合材料进行了对比。实验表明,通过熔融插层可使PN 6基体插层于蒙脱土中,所得到的复合材料的性能较PN 6有很大提高。蒙脱土特殊的层状结构使得利用熔融共混在机械力的作用下插层到纳米级复合材料成为可能。  相似文献   

5.
Polyamide 66/clay nanocomposites (PA66CN) were prepared via melt compounding method by using a new kind of organophilic clay, which was obtained through co-intercalation of epoxy resin and quaternary ammonium into Na-montmorillonite. The silicate layers were dispersed homogeneously and nearly exfoliated in polyamide 66 (PA66) matrix. The introduction of silicate layers induced the appearance of the γ phase in PA66CN at room temperature, more clay loadings would amplify this phenomenon; the addition of clay also changed the structure of the α crystalline phase. The presence of silicate layers increased the crystallization rate and had a strong hetero phase nucleation effect on PA66 matrix. The lower Brill transition temperature of PA66CN can be attributed to the strong interaction between polyamide chains and surfaces of silicate layers.  相似文献   

6.
徐洁 《聚酯工业》2013,26(3):37-39
主要介绍高档全消光功能性聚酰胺66树脂的加工技术、消光剂的选择、缩聚工艺技术和全消光聚酰胺66纤维的抗紫外线功能。  相似文献   

7.
Preparation of thermally stable recycled PET‐organoclay nanocomposites with improved processing and mechanical properties is a challenging task from the environmental as well as industrial and commercial point of view. In this work, both modification of sodium‐type montmorillonite with 1,2‐dimethyl‐3‐octadecyl‐1H‐imidazol‐3‐ium chloride and additional treatment with [3‐(glycidyloxy)propyl]trimethoxysilane was performed. Thermal stability of the organoclays and nanocomposites prepared by melt compounding was tested by thermogravimetric analysis, differential scanning calorimetry, and melt rheology. In comparison with the organoclays modified with quaternary ammonium compounds, the prepared clays showed substantial suppression of matrix degradation during melt mixing. The increase in interlayer distance of silicate platelets and homogeneity of dispersions in the recycled and virgin PET matrices have been evaluated by transmission electron microscopy and wide‐angle X‐ray scattering. The higher degree of delamination in the nanocomposites filled with imidazole organoclays was in a good agreement with improved rheological characteristics and led to significant enhancement in mechanical properties and thermal stability. A difference in structure (besides the level of delamination and homogeneity of silicate platelets) of recycled versus virgin PET nanocomposites was detected by X‐ray diffraction patterns. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Exfoliated nanocomposites based on polyamide 66 (PA66) and montmorillonite (MMT) were prepared and their thermal stability and combustion behaviour were investigated by using thermal gravity analysis and cone calorimeter. The nanocomposites exhibit higher thermal stability and good flame retardancy. The catalytic decomposition effect of MMT and the barrier effect of layer silicates are presented directly in isothermal oxidation experiment. The initial heat release rate plots show that the addition of MMT can accelerate the ignition of PA66 matrix. A ceramic-like char forms in the surface of the nanocomposites during burning. It is characterized by attenuated total reflection infrared spectra and scanning electron microscopy.  相似文献   

9.
尼龙-6/蒙脱土纳米复合材料用POE-g-MAH改性及性能研究   总被引:6,自引:1,他引:6  
宋波  黄锐  魏刚 《现代化工》2004,24(1):43-45
制备了尼龙-6(PA6)/马来酸酐接枝乙烯-1-辛烯共聚物(POE-g-MAH)和PA6-蒙脱土纳米复合物(NCH)/POE-g-MAH两种复合材料,其脆韧转变点都是在POE-g-MAH质量分数为8%~10%。在脆韧转变点前,PA6/POE-g-MAH和NCH/POE-g-MAH的缺口冲击强度几乎相同;在脆韧转变点后,NCH/POE-g-MAH的冲击强度远高于PA6/POE-g-MAH。复合材料的拉伸强度都随POE-g-MAH的增加而线性下降,在相同POE-g-MAH含量时,NCH/POE-g-MAH的拉伸强度比PA6/POE-g-MAH的低4MPa左右。  相似文献   

10.
X‐ray diffraction methods, DSC thermal analysis, and polarized light microscopy (PLM) were used to investigate the structural changes of nylon 66/clay nanocomposites. PA 66/clay nanocomposites were prepared by the method of melt intercalation. The results indicate that the addition of the intercalated organo‐montmorillonite (OMMT) can induce generation of the β‐form crystal of PA 66 and substantially affect the arrangement of molecules in the α‐form crystal, although the crystallinity scarcely changes. Also, the DSC results indicate that the addition of OMMT in the PA 66 matrix leads to increases of crystallization temperatures and the full width at half maximum (FWHM) of the exothermic peaks. Moreover, the viscosity factor is the main influence on FWHM of the exothermic peaks of PA 66/clay nanocomposites. The results of nonisothermal crystallization kinetics show that OMMT has the effect of heterogeneous nucleation and leads to the decrease of the size of the spherocrystal. The heterogeneous nucleation effects of OMMTs influence the mechanism of crystallization and the growth mode of PA 66 crystals. PLM photographs verify that the size of spherocrystal is decreased and visually confirm the theory of crystallization kinetics. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 756–763, 2005  相似文献   

11.
The generation of nanocomposites upon intercalation and exfoliation of clay tactoids using melt compounding is a difficult process. In this study various polymeric binders were melt compounded with organophilic clay particles using myriad methods, including sonication, batch mixing, and twin screw extrusion. The characterization of the compounded samples employing X‐ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that there is little intercalation and exfoliation when nonpolar poly(dimethyl siloxane) (PDMS) and poly(propylene) (PP) binders were used, resulting in no significant changes in the dynamic properties of the suspensions upon small‐amplitude oscillatory shearing. On the other hand, when polar polymeric binders, i.e., silanol terminated poly(dimethyl siloxane) and maleic anhydride modified PP were used for compounding with organoclays, TEM and XRD revealed intercalation with some partial exfoliation, resulting in increases in the dynamic properties, along with sensitivity to the thermomechanical history during processing. These results reinforce earlier findings, which suggest that the interfacial properties between the organoclays and the polymeric binders need to be tailored properly to enable the generation of nanocomposites of organoclays using melt compounding technologies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1391–1398, 2007  相似文献   

12.
采用3种有机改性剂分别对无机粘土进行改性,然后通过熔融共混制得了天然橡胶(NR)/有机粘土纳米复合材料。通过热重分析(TGA)和X-射线衍射(XRD)表征了粘土的有机改性程度。用扫描电镜(SEM)和流变手段表征了纳米复合材料的形态和流变特性。结果表明,含有2条长烷基链和含有2个羟乙基官能团的改性剂对粘土具有更好的改性效果,但由于羟乙基官能团具有强极性,与非极性的NR相容性差,导致有机粘土在基体中大量团聚。各纳米复合材料的储能模量在低频区表现出不同程度的"二次平台"或者"上翘",在时间扫描过程中随着时间变化表现出不同的结构演变。  相似文献   

13.
Influence of sepiolite nanoclay on the properties of the resulting join between poly(lactic acid) (PLA) and different Polyamide66 (PA66)/nanoclay nanocomposites was studied in this work. Six different polymer nanocomposites based on PA66 were manufactured through a melt compounding process by adding a fixed 1.64 wt % of a commercial IR absorber additive and the respective weight percentages of sepiolite to the polymer matrix. Several nanocomposite/PLA joints were finally performed by means of the transmission laser welding technology and the resulting weldings were characterized in terms of mechanical properties by performing peeling and shearing tests. Furthermore, both welded and mechanically tested samples were also analyzed by scanning electron microscopy in order to study the morphology of the weld seam. The results of the performed tests show that the addition of sepiolite to the PA66 improves the welding performance only in those cases in which the percentage of sepiolite of the nanocomposites is higher than 5 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46638.  相似文献   

14.
聚酰胺66的复配阻燃研究   总被引:3,自引:0,他引:3  
采用35%磷-溴-锑复配阻燃体系对聚酰胺66进行阻燃,极限氧指数可提高到33.6%,达到UL94-V0级(1.6mm),且无熔融滴落。阻燃体系的添加会导致聚酰胺66力学性能的下降,但与无机阻燃体系相比较,磷-溴-锑复配阻燃体系对聚酰胺66的力学性能影响较小。采用扫描电镜观察阻燃剂在聚酰胺66中的分散效果,发现分散均匀的体系,在水中或者在110℃的析出实验条件下,阻燃剂的析出量很小,可以维持较长时间的阻燃效果。  相似文献   

15.
The wicking phenomenon is of prime importance with regards to biomedical applications of nanofiber yarns such as suture yarns and tissue scaffolds. In such applications, the yarns are usually subjected to cyclic tensile forces and biological tensile stresses. There is a lack of science behind the effect of fatigue on wicking properties of nanofiber yarns and this work aims at exploring this venue. Wicking properties of polyamide 66 nanofiber yarns are investigated by tracing the color change in the yarn structure resulting from pH changes during the capillary rise of distilled water. Results show that applying cyclic loading increases equilibrium wicking height in the Lucus–Washburn equation, which is attributed to changes in the overall pore structure in the cyclic loaded yarn. The likely causes of these changes are studied by scanning electron microscope, which reveals disentangled, more or less aligned and parallel nanofibers with a smaller radius in the nanofibrous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47206.  相似文献   

16.
Polypropylene/organoclay nanocomposites modified with different maleic anhydride grafted polypropylene (PPgMA) compatibilizers were compounded on a twin‐screw extruder. The effectiveness of the feeding sequence and compatibilizer type toward the dispersion of organoclay into PP matrix was critically studied. The composites prepared with side feed appeared to provide better dispersion and modulus improvement over that with hopper feed. The effect of PPgMA compatibilizers, including PB3150, PB3200, PB3000, and E43, with a wide range of maleic anhydride (MA) content and molecular weight was also examined. The structure was investigated with X‐ray diffraction and transmission electron microscopy. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties were determined by dynamical mechanical analysis and tensile and impact tests. Maleated polypropylene with low‐melt flow index and moderate MA content enhanced clay dispersion and resulted in significant improvement in tensile modulus of the nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 100–112, 2004  相似文献   

17.
A melt pump was assembled into the compounding line to ensure both sufficient time for diffusion process of polymer chains into the silicate gallery and sufficient mechanical shear energy for exfoliation of clay layers. The melt pump in front of the open co‐rotating twin‐screw extruder controls the throughput rate and the residence time, whereas the screw speed and screw geometry in the extruder determine the mechanical shear energy applied on the compound. Due to melt pump employment, the melt in metering zone can be accumulated, which results in higher mixing efficiency. It was found that using the melt pump leads to up to two times higher residence time and, consequently, higher level of material reinforcement as investigated by extensional rheology. Different melt pump adjustments, screw geometries, and screw speeds were tested and their effect on processing characteristics and material reinforcement was investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The non‐isothermal crystallization behaviors of PA56, PA66, and PA56/PA66 blends were studied by differential scanning calorimetry. The Jeziorny and Mo's methods were used to analyze their non‐isothermal crystallization kinetics. The results indicated that Mo's method was better to describe the experimental data in this work. The crystallization rate of PA56 was much slower than that of PA66. The crystallization rate of PA56/PA66 blend was speeded up significantly with the increasing PA66 content when the PA66 content was less than 30 wt %. Further increase in the PA66 content only leads to relatively less increase of the crystallization rate in the PA56/PA66 blends. Activation energies have been determined with Friedman method. The activation energy of PA56/PA66 blends is decreased and lower than that of PA56. PA66 may play a role of nucleating agent toward PA56 to make it crystallize more easily in PA56/PA66 blends. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46409.  相似文献   

19.
A study of the changes in crystal perfection of polyamide 66 (PA66) and polyamide 66/clay nanocomposites (PA66CN) due to different thermal processing was carried out. We designed three series of thermal processing including melt-quench (MQ), post-annealing MQ sample (MQA), and melt–slow cooling–annealing (MSA). The annealing temperature was set as 180 or 210 °C, which is within Brill temperature range of PA66. Fourier transform infrared (FT-IR) spectroscopy and wide angle X-ray diffraction (WAXD) were employed to characterize the perfection in short-range order and long-range order structures, respectively. The results showed that the crystal perfection of PA66 and PA66CN with different thermal processing is quite different, and the changing fashions with thermal processing for different ordered structures are not similar. In this work, MSA is optimal thermal processing for high crystallinity and crystal perfection. Exfoliated nanoclay layers exert considerable impact on the perfection of long-range ordered structures, but little on that of short-range ordered ones.  相似文献   

20.
The effects of multiwalled carbon nanotubes (MWCNTs) on the thermal properties and flame retardancy of a new polyamide (PA) derived from glutaric acid and aromatic diamine were investigated in this work. The synthesized PA containing pyridine and trialkylamine groups was characterized by 1H NMR and SEC. The PA unit structure was geometrically optimized at the B3LYP/6‐311++G(d, p) level of theory. PA showed a glass transition temperature of 151 ºC. PA nanocomposites containing two different amounts of MWCNTs were prepared via the solution intercalation technique with the solvent N,N‐dimethylacetamide. Transmission electron microscopy showed that MWCNTs were exfoliated in the polymer matrix, resulting in well‐dispersed morphologies at 3 wt% MWCNT content. The redox behaviors of PA and the nanocomposites were examined using cyclic voltammetry (CV). PA showed a reversible oxidation process in the CV scan. Thermal and flammability properties of the nanocomposites were studied by TGA in nitrogen and air, DSC and with a microscale combustion calorimeter. The TGA results showed that the addition of MWCNTs resulted in a substantial increase in the thermal stability and char yields of the nanocomposites compared with neat PA. The heat release rate and total heat release were significantly reduced in the presence of MWCNTs. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号