首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fixed‐bed fast pyrolysis experiments have been conducted on a sample of cottonseed cake to determine the effects of pyrolysis temperature, heating rate and sweep gas flow rate on pyrolysis yields and chemical compositions of the product oil. The liquid products and the subfractions of pentane soluble part were characterized by elemental analysis, FT‐IR spectroscopy, 1H‐NMR spectroscopy and pentane subfraction was analysed by gas chromatography. The maximum oil yield of 34.8% was obtained at final temperature of 550°C with a heating rate of 700°C min?1 and nitrogen flow rate of 100 cm3 min?1. Chromatographic and spectroscopic studies on bio‐oil have shown that the oils obtained from cottonseed cake can be used as a renewable fuel and chemical feedstock. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Rice straw as a bio-oil source via pyrolysis and steam pyrolysis   总被引:3,自引:0,他引:3  
The pyrolysis of rice straw was studied to estimate the effect of pyrolysis conditions on product yields and bio-oil composition when the heating rate was 5 K/min. Pyrolysis temperature, particle size, sweeping gas flow rate and steam velocity were the experimental parameters. Among the four pyrolysis temperatures; namely, 673, 773, 823 and 973 K; 823 K gave the highest bio-oil yield of 27.26%. Six different particle sizes were examined and sample having a particle size of 0.425<Dp<0.85 mm had a bio-oil yield of 27.77%. Nitrogen was used as the sweeping gas with the flow rates of either 50, 100, 200 and 400 ml/min and the highest bio-oil yield was obtained when flow rate was 200 ml/min. The bio-oil yield reached a maximum value of 35.86% with the steam velocity of 2.7 cm/s. Liquid products obtained from pyrolysis, inert atmosphere pyrolysis and steam pyrolysis were then fractionated into aspalthanes and maltanes. The aliphatic subfraction obtained by column chromatography was then analysed by GC/MS. For further structural analysis, the pyrolysis oils were conducted with 1H-NMR, oils and aliphatic subfractions with FT-IR. The chemical characterisation has shown that the oil obtained from rice straw may be potentially valuable as fuel and chemicals feedstocks.  相似文献   

3.
Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min−1 of gas and 10 g min−1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg−1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil.  相似文献   

4.
Laurel extraction residues with zeolite and alumina catalysts were pyrolyzed in a fixed-bed reactor with a constant heating rate of 10°C min–1. The final pyrolysis temperature and sweep gas flow rate were kept constant at 500°C and 100 ml min–1 in all of the experiments, respectively. The influence of catalysts and their ratio (10, 20, 30, 40, and 50% w/w) on the pyrolysis conversion and product yields were investigated in detail. The physicochemical properties of the catalytic bio-oil were determined and compared to those of non-catalytic bio-oil. The catalytic bio-oils were examined using some spectroscopic and chromatographic techniques.  相似文献   

5.
Abstract

A study of pyrolysis of olive cake at the temperature range from 400°C to 700°C has been carried out. The experiments were performed in a laboratory scale tubular reactor under nitrogen atmosphere. The yields of derived gases, liquids, and char were determined in relation to pyrolysis temperature and sweeping gas flow rates, at heating rates of about 300°C min?1. As the pyrolysis temperature was increased, the percentage mass of char decreased whilst gas product increased. The oil products increased to a maximum value of ~39.4 wt% of dry ash free biomass at a pyrolysis temperature of about 550°C in a nitrogen atmosphere with flow rate of 100 mL min?1 and with a heating rate of 300°C min?1. Results showed that the bio-oil obtained under the optimum conditions is a useful substitute for fossil fuels or chemicals.  相似文献   

6.
Fixed-bed slow pyrolysis experiments have been conducted on a sample of safflower seed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 44% was obtained at the final pyrolysis temperature of 500°C, particle size range of +0.425–1.25 mm, with heating rate of 5°C min−1 and sweep gas (N2) flow rate of 100 cm3 min−1 in a fixed-bed lab-scale reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from safflower seed can be used as a renewable fuel and chemical feedstock with a calorific value of 41.0 MJ/kg and empirical formula of CH1.92O0.11N0.02.  相似文献   

7.
Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 °C/min. Final temperature range studied was between 300 and 700 °C and the highest liquid product yield was obtained at 550 °C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and 1H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock.  相似文献   

8.
In the present work, fast pyrolysis of Alternanthera philoxeroides was evaluated with a focus to study the chemical and physical characteristics of bio-oil produced and to determine its practicability as a transportation fuel. Pyrolysis of A.philoxeroides was conducted inside a semi batch quartz glass reactor to determine the effect of different operating conditions on the pyrolysis product yield. The thermal pyrolysis of A. philoxeroides were performed at a temperature range from 350 to 550 °C at a constant heating rate of 25 °C/min & under nitrogen atmosphere at a flow rate of 0.1 L/min, which yielded a total 40.10 wt.% of bio-oil at 450 °C. Later, some more sets of experiments were also performed to see the effect on pyrolysis product yield with change in operating conditions like varying heating rates (50 °C/min, 75 °C/min & 100 °C/min) and different flow rates of nitrogen (0.2, 0.3, 0.4 & 0.5 L/min). The yield of bio-oil during different heating rate (25, 50, 75 and 100 °C/min) was found to be more (43.15 wt.%) at a constant heating rate of 50 °C/min with 0.2 L/min N2 gas flow rate and at a fixed pyrolysis temperature of 450 °C. The High Heating Value (HHV) value of bio-oil (8.88 MJ/kg) was very less due to presence of oxygen in the biomass. However, the high heating value of bio-char (20.41 MJ/kg) was more, and has the potential to be used as a solid fuel. The thermal degradation of A. philoxeroides was studied in TGA under inert atmosphere. The characterization of bio-oil was done by elemental analyser (CHNS/O analyser), FT-IR, & GC/MS. The char was characterized by elemental analyser (CHNS/O analysis), SEM, BET and FT-IR techniques. The chemical characterization showed that the bio-oil could be used as a transportation fuel if upgraded or blended with other fuels. The bio-oil can also be used as feedstock for different chemicals. The bio-char obtained from A. philoxeroides can be used for adsorption purposes because of its high surface area.  相似文献   

9.

Apricot stone (Prunus armeniaca L.) was pyrolyzed in a directly heated fixed-bed reactor under nitrogen atmosphere. Effects of sweeping gas flow rates and pyrolysis temperature on the pyrolysis of the biomass were also studied. Pyrolysis runs were performed using reactor temperatures between 400°C and 700°C with heating rate of about 300°C min?1. As the pyrolysis temperature was increased, the percentage mass of char decreased while gas product increased. The product yields were significantly influenced by the process conditions. The bio-oil obtained at 550°C, at which the liquid product yield was maximum, was analyzed. It was characterized by Fourier transform infrared spectroscopy (FT-IR). In addition, the solid and liquid products were analyzed to determine their elemental composition and calorific value. Chemical fractionation of bio-oil showed that only low quantities of hydrocarbons were present, while oxygenated and polar fractions dominated.  相似文献   

10.
《能源学会志》2014,87(3):227-234
This paper investigates the effects of four reaction parameters that include type of catalyst, catalyst loading, reaction temperature and nitrogen gas flowrate on the liquid (bio-oil) yield from the catalytic pyrolysis of Empty Fruit Bunch (EFB). The experimental design is based on Taguchi's L9 Orthogonal Array in which the reaction parameters are varied at three levels. The maximum liquid yield is predicted based on systematic experimental runs, and is found to be at 5 wt-% of H-Y catalyst, 500 °C and at nitrogen flowrate of 100 ml min−1. The predicted maximum liquid yield is validated with an experimental run at the corresponding predicted conditions. The bio-oil produced at the optimum reaction condition is characterized and compared with known bio-oil standards in the literature.  相似文献   

11.
Cotton seed, as a biomass source, is pyrolysed in a tubular fixed-bed reactor under various sweeping gas (N2) flow rates at different pyrolysis temperatures. In the non-catalytic work, the maximum bio-oil yield was attained as 48.30% at 550 °C with a sweeping gas flow rate of 200 mL min−1. At the optimum conditions, catalytic pyrolysis of biomass samples was performed with various amounts of MgO catalyst (5, 10, 15, and 20 wt.% of raw material). Catalyst addition decreased the quantity of bio-oil yet increased the quality of bio-oil in terms of calorific value, hydrocarbon distribution and removal of oxygenated groups. It was observed that increasing the amount of catalyst used, decreased the oil yields while increased the gas and char yields. Bio-oils obtained at the optimum conditions were separated into aliphatic, aromatic and polar sub-fractions. After the application of column chromatography, bio-oils were subjected into elemental, FT-IR and 1H NMR analyses. Aliphatic sub-fractions of bio-oils were analyzed by GC–MS. It was deduced that the fuel obtained via catalytic pyrolysis mainly consisted of lower weight hydrocarbons in the diesel range. Finally, obtained results were compared with petroleum fractions and evaluated as a potential source for liquid fuels.  相似文献   

12.
Slow, fast and flash pyrolysis of rapeseed   总被引:3,自引:0,他引:3  
Pyrolysis experiments have been conducted on a sample of rapeseed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 73% was obtained at the final pyrolysis temperature of 550–600 °C, particle size range of +0.6–1.25 mm, and sweep gas flow rate of 100 cm3min−1 (N2) at flash pyrolysis conditions in tubular transport reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rapeseed can be used as a renewable fuel and chemical feedstock.  相似文献   

13.
《Energy》2002,27(5):457-469
The reaction kinetics of drying, pyrolysis and combustion of paper sludge have been determined in a thermogravimetric analyzer (TGA). The effects of heating rate (5–30 K min−1) and sample weight (10–50 mg) on drying and pyrolysis of paper sludge have been determined. The kinetic parameters of char combustion are determined at the isothermal conditions (723–1173 K). For dehydration, pyrolysis and combustion of paper sludge, temperature can be divided into drying (−470 K), pyrolysis [low (470–660 K), medium (660–855 K)] and combustion (>855 K) ranges. From the kinetic parameters (frequency factor and activation energy) of water decomposition, two major degradable compounds are found and the experimental thermogravimetric curves predicted by those parameters. For char combustion, the reaction order is found to be unity. The char combustion is well expressed by the shrinking core model with chemical reaction controlling and the activation energy is changed from 24.3 to 10.14 kJ mol−1 K−1 at 873 K.  相似文献   

14.
This work reports the kinetic study of the pyrolysis of four non-edible oil seeds such as Mahua, Karanja, Niger and Linseed conducted at a heating rate of 5, 10 and 15 °C min−1 under nitrogen atmosphere. The relation between kinetic parameters and degradation rate was observed with respect to temperature and heating rate. The results indicated that the kinetic parameters were very close to each other and directly proportional to temperature and heating rate. The comparison of kinetic parameters related to heating rate concluded that heating rate had a direct affinity towards activation energy and pre-exponential factor. The TG-DTG analysis indicated three stages of thermal degradation during pyrolysis of the oil seeds whereas DSC analysis point towards the endothermic and exothermic pathway of pyrolysis. The presence of hemicelluloses, cellulose and lignin was determined on the basis of degradation temperature and their respective functional groups in the seeds observed by FTIR analysis.  相似文献   

15.
Slow pyrolysis of giant mullein (Verbascum thapsus L.) stalks have been carried out in a fixed-bed tubular reactor with (Al2O3, ZnO) and without catalyst at four different temperatures between 400 to 550°C with a constant heating rate of 50°C/min and with a constant sweeping gas (N2) flow rate of 100 cm3/min. The amounts of bio-char, bio-oil, and gas produced were calculated and the compositions of the obtained bio-oils were determined by gas chromatography-mass spectrometry. The effects of pyrolysis parameters, such as temperature and catalyst, on the product yields were investigated. The results show that both temperature and catalyst have significant effects on the conversion of Verbascum thapsus L. into solid, liquid, and gaseous products. The highest liquid yield of 40.43% by weight including the aqeous phase was obtained with 10% zinc oxide catalyst at 500°C temperature. Sixty-seven different products were identified by gas chromatography-mass spectrometry in the bio-oils obtained at 500°C temperature.  相似文献   

16.
《Biomass & bioenergy》2006,30(6):592-598
The purpose of this study is to evaluate the amounts of catalytic pyrolysis products of cottonseed cake in steam atmosphere and investigate the effects of both zeolite and steam on pyrolysis yields. The effect of steam was investigated by co-feeding steam at various velocities (0.6:1.3:2.7 cm s−1) in the presence of zeolite (20 wt% of feed). Liquid pyrolysis products obtained at the most appropriate conditions were fractionated by column chromatography. Elemental analysis and FT-IR were applied on both of these liquid products and their sub-fractions. The H/C ratios obtained from elemental analysis were compared with the petroleum products. The aliphatic sub-fractions of the oils were then analysed by capillary column gas chromatography. Further structural analysis of pyrolysis oil was conducted using 1H-NMR spectroscopy. The characterization has shown that the bio-oil obtained from catalytic and steam pyrolysis of cottonseed cake was more beneficial than those obtained from non-catalytic and catalytic works under static and nitrogen atmospheres.  相似文献   

17.
In the present study, microalgae Scenedesmus dimorphus was reported for pyrolysis in a fixed-bed reactor to determine the effects of temperature on products yield and the chemical compositions of the liquid and solid products. Experiments were carried out at a temperature range of 300–600 °C with heating rate of 40 °C/min and nitrogen flow rate of 100 ml/min. The yield of bio-oil was found to be maximum (39.6%) at the temperature of 500 °C and was further fractionated into n-hexane, toluene, ethyl acetate and methanol sub-fractions by using liquid column chromatography. Various characteristics of bio-oil and its sub-fractions were determined by 1H NMR, FTIR and GC–MS. The biochar produced as a co-product can be a potential soil amendment with multiple benefits including soil fertility and C-sequestration. The present investigation suggests the suitability of Scenedesmus dimorphus as a potential feedstock for exploitation of energy and biomaterials through pyrolytic conversion.  相似文献   

18.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques.  相似文献   

19.
20.
Agriculture residues such as palmyra fruit bunch are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Flash pyrolysis experiments have been conducted in the electrically heated fluidized bed reactor to determine the effect of pyrolysis temperature, particle size, and sweep gas flow rate on the pyrolysis product yield. In this study the maximum oil yield of 48.2% was achieved at a temperature of 500°C, particle size of 1 mm, and at a sweep gas flow rate of 2 m3/h. The results show that the effects of pyrolysis temperature and particle size on pyrolysis yields are more significant than that of sweep gas flow rate. Bio-oil was identified as a biofuel candidate and it was further upgraded for better-quality biofuel. Various physical and elemental analyses were performed for bio-oil and the same characteristics study was also carried out for biofuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号