首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用双螺杆挤出机将废胶粉进行连续脱硫以制备溶胶含量较高的脱硫橡胶,脱硫橡胶可呈流体状态。影响脱硫效果的工艺因素主要有螺杆转速、机筒温度、废胶粉的粒径以及添加剂的用量。对脱硫橡胶进行了溶胶含量、门尼黏度、凝胶渗透色谱及差示扫描量热等的测试分析,结果表明,提高螺杆转速会降低橡胶的溶胶含量,升高机筒温度可以有效提高橡胶的溶胶含量,胶粉粒径越大制得的脱硫橡胶的溶胶含量越低,增加脱硫剂的用量可以提高橡胶的溶胶含量。通过温度、螺杆转速和添加剂用量的选择可以得到脱硫程度不同的脱硫橡胶。  相似文献   

2.
Melt-mixing in twin-screw extruders is a key process in the development of polymer composites. Quantifying the mixing performance of kneading elements based on their internal physical processes is a challenging problem. We discuss melt-mixing by novel kneading elements called “pitched-tip kneading disk (ptKD)”. The disk-stagger angle and tip angle are the main geometric parameters of the ptKDs. We investigated four typical arrangements of the ptKDs, which are forward and backward disk-staggers combined with forward and backward tips. Numerical simulations under a certain feed rate and screw revolution speed were performed, and the mixing process was investigated using Lagrangian statistics. It was found that the four types had different mixing characteristics, and their mixing processes were explained by the coupling effect of drag flow with the disk staggering and pitched-tip and pressure flows, which are controlled by operational conditions. The use of a pitched-tip effectively controls the balance of the pressurization and mixing ability.  相似文献   

3.
The effect of the screw configuration of a closely intermeshing co-rotating twin-screw extruder on residence time and mixing efficiency was studied for an uncompatibilized immiscible PA6/PP (80:20) bend. Alternative screw configurations were investigated systematically. The residence time distribution (RTD) was found to be a poor indicator of the total mixing efficiency, whereas the mixing intensity function yielded considerably better information. High shear stress, sufficient residence time, and high fill ratio in the melting section of the screw were the most important factors in achieving good dispersion of the minor phase. The evolution of morphology along the screw axis depended strongly on the screw configuration. The downstream flow characteristics after the screw end determined the final morphology of the blend.  相似文献   

4.
The self-wiping co-rotating twin-screw extruder was studied as a reactor for two polymerizations in bulk: the homopolymerization of n-butylmethacrylate and the copolymerization of n-butylmethacrylate with 2-hydroxypropylmethacrylate. The influence of the extrusion parameters on the product was analyzed. With both reactions, conversions up to 95% were obtained. Nevertheless, a significant difference was observed in the working domain of both polymerizations, in which a stable reactive extrusion process could be attained wherein the discharge rate is constant and equals the feed rate. In the case of the relatively fast copolymerization, both the throughput and the screw rotation rate could be raised without endangering the stability of the process. This was not the case for the homopolymerization studied. It was determined that the stability of the process depends on the reaction velocity and the product viscosity. Within the boundaries of the working domain, the molecular weight could be influenced by adjustments of the extrusion parameters.  相似文献   

5.
The velocity field in the screw channels of a co-rotating twin-screw extruder was measured using laser Doppler anemometry. Velocity distributions were measured for two screw elements having pitches of 14 and 28 mm, respectively. The magnitude of radial velocity component for both elements was no more than 10% of the magnitude of total velocity. The radial and the axial velocity components were similar for both screw elements. Wider range of tangential velocity values and steeper gradients near the flights were observed for smaller pitch screw element.  相似文献   

6.
7.
This paper concerns the morphology development of in situ compatibilized semicrystalline polymer blends in a co-rotating, intermeshing twin-screw extruder, using polypropylene (PP) and polyamide 6 (PA-6) blends as model systems. The morphology of in situ compatibilized blends develops much faster that of mechanical ones. The size of the dispersed phase (PA-6) undergoes a 104 fold reduction from a few millimeters to sub-micron during its phase transition from solid pellets to a viscoelastic fluid. The final morphology is reached as soon as the phase transition is completed, which usually requires only a small fraction of the screw length in a co-rotating twin screw extruder. Screw profiles and processing conditions (screw speed, throughput and barrel temperature) control the PA-6's melting location and/or rate, but do not have significant impact on the ultimate morphology and mechanical properties of in situ compatibilized blends. The finding that morphology of PP/PA-6 reactive blend develops rapidly makes it possible to produce compatibilized PP/PA-6 blends by the so-called one-step reactive extrusion. It integrates the traditionally separated free radical grafting of maleic anhydride onto PP and the compatibilization of PP/PA-6 into a single extrusion step.  相似文献   

8.
同向双螺杆挤出机的停留时间分布及填充度   总被引:3,自引:1,他引:2       下载免费PDF全文
周光大  曹堃  姚臻  李伯耿  胡国华 《化工学报》2006,57(12):3025-3028
引 言 双螺杆挤出机在高分子材料加工中已被广泛地应用于聚合物共混改性、反应挤出及高分子可控降解等各个方面[1].但先前对挤出过程研究较少,一般仅停留在"黑箱"型经验操作的层面,主要以定性的机械设计为主.  相似文献   

9.
A self-wiping co-rotating twin-screw extruder (TSE) is operated in a starved state in which the screws are partially filled with resin. Understanding the resin distribution on the screw surface of a TSE in this state is essential for the design, operation, and maintenance of the twin-screw extrusion process. Accordingly, in this study, the circumferential and axial distribution of resin in a TSE were simulated using a novel method combining the mathematical formulation of Hele–Shaw flow, the finite element method, and a newly developed down-wind pressure updating scheme. The results of the simulation were found to be in good agreement with experimental measurements. The proposed simulation method enables the detailed visualization of resin distribution in the entire axial and circumferential directions over the length of a TSE, improving the ability to determine both the devolatilization and fiber attrition during the extrusion process.  相似文献   

10.
The context of this study is the modelling of reactive extrusion process based on an alginate extraction protocol. Residence Time Distribution (RTD) is one important part to predict the kinetics of reactive compounds. A simple model is proposed to predict RTD in fully intermeshing co-rotating twin-screw extruders without reaction. This model, which can be easily extended to reactive case in a future work, is based on the extension of an axial dispersion model, including control parameters (screw speed and flow rate) and geometrical parameters (screw profile and die design). Simulations were performed for various operating and geometrical conditions so as to illustrate possibilities offered by the proposed model. Validation was conducted for two different extrusion applications, seaweed extrusion and polymer extrusion. This highlighted the model ability to predict RTD for various kinds of materials after adjusting only one parameter thanks to a unique experimental RTD curve.  相似文献   

11.
本文介绍了啮合同向双螺杆挤出机的发展过程、整机的性能指标及技术难点,并提出促进啮合同向双螺杆挤出机技术进步的建议。  相似文献   

12.
A series of experiments was conducted to determine what correlations exist between an experimental parameter, percent drag flow, and other parameters such as head, tail and mean residence time. Experimentation was carried out on two polymer systems, a model system of near-Newtonian fluid and a viscoelastic system of polyisoprene with several additives. To aid in the residence time analysis, data from three literature sources were cited and replotted. A family of residence time curves for a partially filled system can be combined into one curve by plotting the number of screw revolutions carrying the tracer to the extruder exit versus the percent drag flow. This method of plotting the data for each screw configuration estimates the mean residence time for any throughput and screw speed once a few data points are taken. In all four sets of experiments, the number of screw revolutions carrying the tracer to the exit decreases with increasing percent drag flow. The filled volume of the extruder was calculated from residence time data to show that percent drag flow is linearly related to extruder filled volume. When percent drag flow increased in the viscoelastic system the following results were recorded: fraction of polymer residence time spent in conveying elements increased, fraction of residence time spent in mixing elements decreased, polymer Mooney viscosity increased, number and weight average molecular weights increased and polydispersivity increased.  相似文献   

13.
This paper addresses the apparent controversy surrounding the role of the solid bed mechanics in the Maddock melting mechanism. It is demonstrated that the inability of the melting models based on the freely deformable solid bed concept to predict accurately the pressure gradients in the melting zone is not exclusively due to the highly simplified isothermal Newtonian treatment of the melt pool as presumed previously. This study has shown that when using a non isothermal non-Newtonian flow model for the melt pool, the freely deformable solid bed concept still results in unrealistically low pressure gradients while it may give good predictions of the melting rates. To the contrary, when a rigid solid bed is assumed, the pressure predictions tend to represent the experimental data more closely, whereas the theoretical melting rates seems to become less realistic. In view of the fact that both the freely deformable and the rigid solid bed concepts show such inconsistencies, it has been concluded that the mechanics governing the solids and melt transport in the melting zone require some additional examination, most notably, the influence of the constitutive behavior of the solid bed and of the cross-channel melt circulation around the solid bed, and possibly of the melting kinetics for semicrystalline polymers.  相似文献   

14.
A mass transfer model was developed to represent the desorption of a volatile species from a molten polymer in an extruder consisting of co-rotating twin screws in a figure-eight bore. The melt undergoes a series of alternating exposure and mixing processes while being transported axially through the device. The model relates the ratio of entrance to exit concentrations of the volatile species to the dimensions of the screws, the rate of their rotation, the rate of polymer flow, and the diffusion coefficient of the volatile species in the polymer. Experimental data, obtained with a halocarbon-polybutene system in a twin-screw extruder, were compared with predictions of the model. For the observed performance, the model predicts a process screw length about 14 percent below the actual screw length in the experimental extruder.  相似文献   

15.
Intermeshing co-rotating twin-screw extruders are very versatile because their screw configurations can be tailored both to the application and to the properties of the materials used. Finding the best screw configuration is one of the main purposes of twin-screw extrusion modeling, and requires models that accurately predict conveying and power consumption. The better the process can be predicted, the better the requirements of the final product can be met. We present novel prediction models of the conveying and power-consumption behaviors of intermeshing co-rotating twin-screw extruder kneading blocks for Newtonian fluids. These are based on numerical simulations and therefore consider the complex three dimensional (3D) geometry of this element type without the need for common simplifications. Our models are thus capable of including all leakage flows and gap influences, which are usually ignored, for example, by the flat-plate model. Since our models are derived by symbolic regression based on genetic programming, they consist of algebraic functions and are low-threshold. They can be used to calculate various process parameters for individual kneading blocks or entire screw configurations, as illustrated by a use case.  相似文献   

16.
In many operations in polymer processing, such as polymer blending, devolatilization, or incorporation of fillers in a polymeric matrix, continuous mixers are used; e.g., corotating twin-screw extruders (ZSK), Buss Cokneaders and Farrel Continuous Mixers. Theoretical analysis of these machines tends to emphasize the flow in complex geometries rather than generate results that can be directly used (1–5). In this paper, a simple model is developed for the hot melt closely intermeshing corotating twin-screw extruder, analogous to the analysis of the single-screw extruder carried out in 1922 and 1928 (6, 7). With this model, and more specifically with its extension to the complete nonisothermal, non-Newtonian situation, it is possible to understand the extrusion process and to calculate the energy, specific energy, and temperature rise during the process with respect not only to the viscosity of the melt, but also to the screw geometry (location and number of transport elements, kneading sections and blisters, pitch, positive or negative, screw clearance, and flight width) and screw speed. To support the theoretical analysis, model experiments with a Plexiglas-walled twin-screw extruder were performed, in addition to practical experiments with melts on small- and large-scale extruders, with very reasonable results, In Part 2, the Buss Cokneader will be analyzed analogously.  相似文献   

17.
Three-dimensional flow simulations of kneading elements in an intermeshing corotating twin-screw extruder are performed by solving the Navier Stokes equations with a finite element package, Sepran. Instead of using the whole geometry of the 8-shaped barrel a simplified geometry is used, representing a large part of the geometry during the rotating action of the kneading paddle. The goal of these calculations is to study the dependence of several factors that influence mixing, such as shear rate, elongation rate, pressure, and the flow profile in the extruder on various extruder parameters, such as fluid viscosity, rotation speed, and throughput. The shear and elongation rate and the pressure drop are calculated for varying viscosities. The various stagger angles possible for disc configurations in the corotating twin-screw extruder are modeled. The axial backflow volume is calculated for varying values of rotation speed and throughput.  相似文献   

18.
A three-dimensional modeling of the transporting elements in a self-wiping corotating twin-screw extruder has been carried out by using the finite element package Sepran (1). This simulation uses the 3D geometry of the channel rolled over the twin-screw, which consists of the intermeshing and normal areas. The flow profile, the backflow volume, the pressure buildup, the shear and elongation rates, and the adiabatic axial temperature gradient have been calculated by solving the Navier-Stokes equations and the continuity equation for a Newtonian fluid. These results are given for different extruder parameters such as the throughput of the extruder, the rotation speed of the screws and the helix angle of the screws to better understand the influence of different extruder configurations. This study belongs to a program of research on the self-wiping corotating twin-screw extruder that also includes the modeling of the kneading elements (Part II) and, in the future, the study of scale-up and heat transfer.  相似文献   

19.
The residence time distribution of poly(vinyl chloride) (PVC) polymers in a counterrotating twin screw commercial extruder was determined and analyzed. The experimental technique involved the use of manganese dioxide as a tracer after being neutron activated and was injected into the extruder during normal operation without interrupting the poly(vinyl chloride) compound production. The experimental results enabled us to better understand the flow and mixing conditions in the extruder.  相似文献   

20.
Deterministic mathematical models of the Maddock melting mechanism based on analytical and finite-difference solution methods are surveyed and classified according to the key assumptions involved. It has been concluded that the rigid solid bed concept coupled with a consistent non-Newtonian analysis of the melt flow pattern, including cross-channel circulation, leads to superior results. It is suggested that the development of the melting theory for the Maddock mechanism as an engineering analytical tool is virtually complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号