共查询到20条相似文献,搜索用时 0 毫秒
1.
Fossil fuels such as coal still dominate in current energy production plants. However, due to their large carbon footprint caused by combustion, rising prices and the unclear an increased interest in renewable and alternative fuels is observable. By 2020, renewable energy should account for 20% of the EU’s final energy consumption in order to reduce the negative impacts of the utilization of fossil fuels. Biomass-based fuels contribute to this effort.The optimization approach introduced in this article supports sustainable and financially feasible biomass integration into the existing large energy producing system with combined heat and power (CHP) production. The objective is to identify optimal conditions (optimal amount of burned fuels with respect to energy demands and energy flows through key components) with regard to maximum annual financial profit.The general mathematical model of a CHP plant utilizing more types of fuels is introduced and an optimization problem is formulated. The approach application is demonstrated on a case study involving existing CHP plant co-firing coal and biomass. The optimization problem is implemented and solved in GAMS (General Algebraic Modeling System). A sensitivity analysis of crucial parameters is performed and the results are presented and discussed. 相似文献
2.
3.
4.
5.
This paper presents a methodology to estimate the economic, emissions, and energy benefits that could be obtained from a base loaded CHP system using screening parameters and system component efficiencies. On the basis of the location of the system and the facility power to heat ratio, the power that must be supplied by a base loaded CHP system in order to potentially achieve cost, emissions, or primary energy savings can be estimated. A base loaded CHP system is analyzed in nine US cities in different climate zones, which differ in both the local electricity generation fuel mix and local electricity prices. Its potential to produce economic, emissions, and energy savings is quantified on the basis of the minimum fraction of the useful heat to the heat recovered by the CHP system (φmin). The values for φmin are determined for each location in terms of cost, emissions, and energy. Results indicate that in terms of cost, four of the nine evaluated cities (Houston, San Francisco, Boulder, and Duluth) do not need to use any of the heat recovered by the CHP system to potentially generate cost savings. On the other hand, in cities such as Seattle, around 86% of the recovered heat needs to be used to potentially provide cost savings. In terms of emissions, only Chicago, Boulder, and Duluth are able to reduce emissions without using any of the recovered heat. In terms of primary energy consumption, only Chicago and Duluth do not require the use of any of the recovered heat to yield primary energy savings. For the rest of the evaluated cities, some of the recovered heat must be used in order to reduce the primary energy consumption with respect to the reference case. In addition, the effect of the efficiency of the power generation unit and the facility power to heat ratio on the potential of the CHP system to reduce cost, emissions, and primary energy is investigated, and a graphical method is presented for examining the trade‐offs between power to heat ratio, base loading fraction, percentage of recovered heat used, and minimum ratios for cost, emissions, and primary energy. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
7.
The objective of this paper is to study the performance of a combined heat and power (CHP) system that uses two power generation units (PGU). In addition, the effect of thermal energy storage is evaluated for the proposed dual‐PGU CHP configuration (D‐CHP). Two scenarios are evaluated in this paper. In the first scenario, one PGU operates at base‐loading condition, while the second PGU operates following the electric load. In the second scenario, one PGU operates at base‐loading condition, while the second PGU operates following the thermal load. The D‐CHP system is modeled for the same building in four different locations to account for variation of the electric and thermal loads due to weather data. The D‐CHP system results are compared with the reference building by using conventional technology to determine the benefits of this proposed system in terms of operational cost and carbon dioxide emissions. The D‐CHP system results, with and without thermal storage, are also compared with that of single‐PGU CHP systems operating following the electric load (FEL), following the thermal load (FTL), and base‐loaded (BL). Results indicate that the D‐CHP system operating either FEL or FTL in general provides better results than a single‐PGU CHP system operating FEL, FTL, or BL. The addition of thermal storage enhances the potential benefits from D‐CHP system operation in terms of operational cost savings and emissions savings. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
针对传统热电联产(CHP)系统受热电耦合的限制,灵活调节能力低、可再生能源消纳能力弱的问题,分析了传统热电联产系统的灵活性不足机理,提出采用地热源热泵来提高其灵活性。为了确定地热源热泵(GSHP)的最优容量,建立了考虑切负荷惩罚、可再生能源弃用惩罚、设备投资成本及运行成本的热电联产-地热源热泵系统优化模型,将该模型运用到可再生能源渗透率(可再生能源发电量/总发电量)分别为15%,40%和55%的3种情景中。结果表明:地热源热泵的容量随可再生能源渗透率的提升而提升,同时地热源热泵的集成可以扩大系统的可运行域,提高可再生能源的消纳容量;在最优地热源热泵容量下,3种场景的日节约成本分别为38%,64%和70%,同时集成系统的能源利用率可超过100%,可再生能源弃用的惩罚成本分别下降100%,89%和89%。 相似文献
9.
通过比较热电联产机组与常规火电机组的优势劣势,分析了国内外电力市场中热电联产机组的扶持政策和运营情况,提出了热电联产机组参与电力市场的两部制电价机制设计方法,给出了热电联产机组两部制电价中可用容量、可用小时数、容量电价、电量电价等参数的计算方法,形成了一套科学合理的价格形成机制,使其与常规火电机组可以参与同一电力市场竞价上网。 相似文献
10.
11.
Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units which produce either heat or power exclusively. Hence the economic dispatch problem for these plants optimizing the fuel cost is quite complex and several classical and meta-heuristic algorithms have been proposed earlier. This paper applies the invasive weed optimization algorithm which is inspired by the ecological process of weed colonization and distribution. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over earlier ones. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(56):32269-32284
Recently, the integration of various energy resources, including renewable generation and combined heat and power (CHP) units in microgrids, has created the opportunity of off-grid operation with a suitable range of reliability. This paper presents an optimization model to schedule an islanded MG with various resources, including CHP, photovoltaic (PV), and boiler, as the primary energy provision sources besides electric battery storage, thermal storage and hydrogen energy system (HES). The HES has the power-to-hydrogen (P2H) and hydrogen-to-power (H2P) modes, which increases the flexibility of the scheduling. The uncertainty management is the most essential task in the CHP-based MGs scheduling problem, since the power and heat productions are interrelated and can result in economic losses without enough deliberations. Hence, this paper proposes the robust optimization approach (ROA) to cope with the uncertainties associated with the PV production and electric and heat load demands. The robust counterparts are applied to the deterministic problem to create a tractable adjustable robust framework. The problem is structured as a mixed-integer linear programming (MILP) handled by the General Algebraic Modeling System (GAMS) using CPLEX solver. The results verified the effectiveness of the proposed robust counterparts in managing the associated risk. The results illustrated a conscious scheduling strategy under robust conditions. However, the more preserved decisions are taken, the higher operational cost is realized. In this regard, the increment of robustness level from the lowest value (deterministic condition) to the highest value (conservatism condition) increased the operation cost by about 43.29%. 相似文献
13.
14.
希腊的区域供热始于1994年,采用热电联产技术向用户供热。预计目前在建项目完成以后,总装机容量将超过300MW,其中约85%为现有燃煤机组,其余16%主要是烧柴油和液化石油气的调峰机组。目前用户数量已超过25000户,供热建筑超过6000幢。由于区域供热价格具有竞争力,且初始投资成本低,所以时希腊而言尤其具有吸引力。随着希腊能源市场自由化以及输气管线的完善,区域供热技术将在能源和环保领域产生更大的效益。 相似文献
15.
16.
The development of industrial ecology has led company managers to increasingly consider their company's niche in the regional system, and to develop optimization plans. We used emergy-based, ecological-economic synthesis to evaluate two optimization plans for the Jiufa Combined Heat and Power (CHP) Plant, Shandong China. In addition, we performed economic input–output analysis and energy analysis on the system. The results showed that appropriately incorporating a firm with temporary extra productivity into its regional system will help maximize the total productivity and improve ecological-economic efficiency and benefits to society, even without technical optimization of the firm itself. In addition, developing a closer relationship between a company and its regional system will facilitate the development of new optimization opportunities. Small coal-based CHP plants have lower-energy efficiency, higher environmental loading, and lower sustainability than large fossil fuel and renewable energy-based systems. The emergy exchange ratio (EER) proved to be an important index for evaluating the vitality of highly developed ecological-economic systems. 相似文献
17.
Spain is the world’s main producer of olive oil, with an annual production approaching 1 million tons. A great amount of wet residues are generated – mainly sludge, thus favouring the development of energy plants for their treatment and/or elimination. Such installations require a simultaneous electric and thermal energy demand, and combined heat and power (CHP) systems might be the most adequate in certain cases. The economic viability of a CHP system in a sludge processing plant (sludge obtained from olive oil extraction industry) is analysed in the present work. Special attention is paid to the analysis and discussion of energy savings and environmental benefits. 相似文献
18.
Utilizing the combined heat and power (CHP) systems to produce both electricity and heat is growing rapidly due to their high efficiency and low emissions in domestic, commercial, and industrial applications. In the first two categories among available drivers, due to the compact size and low weight, microturbines are attractive choice. In this paper, by using an energy–economic analysis the type and number of the required microturbines for the specific electricity and heat load curves during a year were selected. For performing this task an objective function annual profit (AP) was introduced and maximized. The operation strategy and the payback period of the chosen system was also determined in this study. 相似文献
19.
化学热泵是高效,环保的新型能源技术,在余热回收,储热,可再生能源等领域具有广泛的应用前景.本文综述了化学热泵系统的一般理论和在储热技术中的应用,介绍了化学热泵系统技术在反应与工质对选择,传热强化以及工业研究与应用等方面的发展. 相似文献
20.
Excess heat from a kraft pulp mill can be used either internally to increase the level of efficiency in the mill, or externally for example as district heating. This paper presents an approach to investigate the competition between external and internal use through modelling the pulp mill and an energy company (ECO) within the same system boundary. Three different sizes of ECOs with different district heating demands are studied. To investigate the competitiveness of using industrial excess heat as district heating compared with other heat production techniques, the option of investing in excess heat use is introduced, along with the possibility for the ECO to invest in biomass combined heat and power (CHP), waste CHP and natural gas combined cycle (NGCC). To evaluate the robustness of the model, alternative solutions are identified and will be used as a comparison to the optimal solutions. The model has been verified by comparing the results with previous studies concerning kraft pulp mills and with related studies regarding district heating and real ECOs. Finally, the approach presented in this part of the study will be used in the second part in order to investigate the trade-off between internal and external use of excess heat under different future energy market scenarios. 相似文献