首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel control scheme has been proposed to solve the synchronization control problem for a nonlinear bilateral teleoperation system with time delays in this paper. An extended state observer is introduced to deal with the lumped system uncertainties. Both fast convergence rate and high convergence precision are guaranteed via designing an integral sliding mode controller. Some general Lyapunov stability criteria are given for the nonlinear bilateral teleoperation system with time delays. Lastly, two Phantom Premium 1.5 HF robot manipulators are used in the experiments to demonstrate the effectiveness of the developed techniques in this paper.  相似文献   

2.
In this paper, adaptive NN control is proposed for bilateral teleoperation system with dynamic uncertainties, unknown external disturbances, and unsymmetrical stochastic delays in communication channel to achieve transparency and robust stability. Compared with previous passivity‐based teleoperation framework, the communication delays are unsymmetrical and stochastic. By partial feedback linearization using nominal dynamics, the nonlinear dynamics of the teleoperation system are transformed into two subsystems: local master/slave dynamics control and time‐delay motion tracking. By integrating Markov jump systems and adaptive parameters updating, adaptive NN control strategy is developed. The stability of the closed‐loop system and the boundedness of tracking errors are proved using Lyapunov–Krasovskii functional synthesis under specific linear matrix inequalities conditions. The proposed adaptive NN control is robust against motion disturbances, parametric uncertainties, and unsymmetrical stochastic delay, which effectiveness is validated by extensive simulation studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
针对机械臂遥操作系统中存在的时变时延问题,提出了基于广义扩张状态观测器的控制方法,实现了遥操作系统稳定并且主从机械臂关节角位置同步的控制目标。首先通过反馈线性化,将遥操作系统的主从机械臂动力学模型转化为一个关于位置跟踪误差和时延的状态空间模型。针对该多输入多输出的干扰不匹配模型,设计了广义扩张状态观测器和相应的控制律,从而消除了时变时延以及其它扰动引起的不确定性对系统的影响,并对系统进行稳定性和抗扰性分析。最后,通过仿真验证了所设计的控制方法的有效性。  相似文献   

4.
This article addresses the problem of designing the robust tracking control for a class of uncertain electrically driven robots with time delays. The unknown time-delay uncertainty is assumed to be bounded by a function of all the state variables. By suitably choosing the Lyapunov–Krasovskii functionals, a novel adaptive/robust neural tracking control scheme is developed for the first time such that all the states and signals of the closed-loop time-delay robot system are bounded and the tracking error is shown to be uniformly ultimately bounded. By suitably designing the embedded current signal, the effect of time-delay uncertainty in the mechanical dynamics does not require to be incorporated into the current tracking error dynamics, and so the Lyapunov–Krasovskii functionals can be easily constructed in the stability analysis. Compared with the previous investigations of controlling robots the control scheme developed here can be extended to handle a broader class of electrically driven robots perturbed simultaneously by plant uncertainties, time-varying perturbations, and time-delay uncertainties. Finally, simulation examples are made to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

5.

In order to reduce the influence of time-varying disturbances for magnetic levitation system, we propose a reduced-order generalized proportional integral observer (RGPIO) based continuous dynamic sliding mode control scheme for magnetic levitation system in this paper. Unlike the popular extended state observer (ESO), it could deal with constant or slowing varying disturbances from theoretical point of view, the reduced-order generalized proportional integral observer (RGPIO) is designed to estimate the time-varying disturbances and system states, then the dynamic sliding mode surface is developed and deduce a continuous sliding mode controller (CSMC) for magnetic levitation system. Compared with ESO based continuous sliding mode controller, the proposed method not only ensures the position tracking accuracy, but also obtain better time-varying disturbance reject ability. Simulation and experimental results are also given to verify the effectiveness.

  相似文献   

6.
In this paper, stabilization of a nonlinear bilateral teleoperation system with time delays and actuator saturation is investigated via active disturbance rejection control (ADRC). An linear extended state observer is introduced to deal with the lumped system uncertainties. Lyapunov functions are given to prove the stabilization of the closed‐loop bilateral teleoperation system. Two Phantom Premium 1.5 HighForce (HF) robot manipulators are used in experiments to demonstrate the effectiveness of the proposed method in this paper.  相似文献   

7.
针对伺服电机驱动的连铸结晶器振动位移系统中存在时变负载转矩、参数不确定性等问题,本文提出了一种基于扩张状态观测器(extended state observer, ESO)的自适应非奇异终端滑模(nonsingular terminal sliding mode,NTSM)控制方法.首先,设计ESO对系统存在的综合扰动和不可测状态进行估计.然后,采用分层设计的方法,分别对位移跟踪子系统和电流环子系统设计基于ESO的自适应NTSM控制器和滑模控制器.为削弱ESO估计误差对跟踪精度的影响,在NTSM控制器中引入了自适应增益.可以证明,所设计的控制器能够保证闭环系统所有信号有界,系统状态可渐近收敛到原点附近的小邻域内.最后,仿真结果验证了所提出控制方法的有效性.  相似文献   

8.
Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely. For the tracking control of teleoperation systems, velocity measurements are necessary to provide feedback information. However, due to hardware technology and cost constraints, the velocity measurements are not always available. In addition, the time-varying communication delay makes it challenging to achieve tracking task. This paper provides a solution to the issue of real-time tracking for teleoperation systems, subjected to unavailable velocity signals and time-varying communication delays. In order to estimate the velocity information, immersion and invariance (I&I) technique is employed to develop an exponential stability velocity observer. For the proposed velocity observer, a linear relationship between position and observation state is constructed, through which the need of solving partial differential and certain integral equations can be avoided. Meanwhile, the mean value theorem is exploited to separate the observation error terms, and hence, all functions in our observer can be analytically expressed. With the estimated velocity information, a slave-torque feedback control law is presented. A novel Lyapunov-Krasovskii functional is constructed to establish asymptotic tracking conditions. In particular, the relationship between the controller design parameters and the allowable maximum delay values is provided. Finally, simulation and experimental results reveal that the proposed velocity observer and controller can guarantee that the observation errors and tracking error converge to zero.   相似文献   

9.
A dual closed‐loop tracking control is proposed for a wheeled mobile robot based on active disturbance rejection control (ADRC) and model predictive control (MPC). In the inner loop system, the ADRC scheme with an extended state observer (ESO) is proposed to estimate and compensate external disturbances. In the outer loop system, the MPC strategy is developed to generate a desired velocity for the inner loop dynamic system subject to a diamond‐shaped input constraint. Both effectiveness and stability analysis are given for the ESO and the dual closed‐loop system, respectively. Simulation results demonstrate the performances of the proposed control scheme.  相似文献   

10.
This paper presents a passive control scheme for a force reflecting bilateral teleoperation system with a varying time communication delay. To improve the stability and performance of the system, the master and slave must be coupled dynamically via a transmission network through which the force and velocity are communicated bilaterally. However, the time delay caused by various factors, such as the transmission distance, network congestion, and communication bandwidth, is a long-standing impediment to bilateral control that can destabilize the system. In this study, we investigated how a varying time delay affects the stability of a teleoperation system. A new optimal adaptive approach based on a passive control scheme was designed bilaterally for both the master and slave sites. Extra variables were transmitted together with the wave variables in the scattering system. The proposed scheme achieved both passive control, and an acceptable tracking performance. The tracking performance was demonstrated using a computer simulation of varying time delays in a bilateral teleoperation system.  相似文献   

11.
In this paper, a novel control approach is presented to improve the stability and transparency of the nonlinear bilateral teleoperation system with time delays, where a four-channel (4-CH) architecture using modified wave reflection reduction transformation is explored in order to guarantee the passivity of the communication channels in the nonlinear bilateral teleoperation system; a sliding-mode controller is proposed to compensate for the dynamic uncertainties and enhance the system synchronization performance in finite time. The system stability has been analyzed using Lyapunov functions. The proposed method is validated through experimental work based on a 3-DOF bilateral teleoperation platform in the presence of time delays. The experimental results clearly demonstrate that the proposed control algorithm has superiority on system transparency over other wave-based systems.  相似文献   

12.
In this paper, robust tracking control is investigated for a class of uncertain flexible-joint robots with time delays and time-varying perturbations. By employing the Lyapunov--Krasovskii functional technique and backstepping design technique, a novel robust tracking control scheme using only position measurements is developed such that all the states and signals of the closed-loop flexible-joint time-delay robot system remain bounded and the tracking error can asymptotically converge to a small neighbourhood around the origin. By appropriately choosing the weighting gains in the Lyapunov–Krasovskii functionals, the circular phenomenon in the controller design is overcome. Due to suitably designing the velocity observer and the virtual control input, the link-side dynamics does not need to be incorporated into the actuator-side tracking error dynamics, and so the complexity in the backstepping design is avoided. Consequently, we can easily construct the Lyapunov–Krasovskii functionals, and, in turn, the robust tracking control scheme developed here is a linear time-varying controller and can be simply implemented. Simulation examples are provided to verify the effectiveness of the proposed control algorithm.  相似文献   

13.
马壮  方一鸣  许淼  李强 《控制与决策》2023,38(2):413-420
针对伺服电机驱动的连铸结晶器控制系统执行器输入饱和和状态受限问题,同时考虑系统存在负载扰动、参数摄动等不确定性问题,提出一种基于扩张状态观测器的跟踪误差预设性能反步控制策略.首先,针对执行器输入饱和问题,建立系统的数学模型;然后,采用一种线性扩张状态观测器实时观测系统时变负载扰动、参数摄动等不确定性,并对观测误差的收敛性进行分析;接着,针对伺服电机电流饱和与跟踪误差预设性能控制问题,通过引入辅助状态变量确保系统跟踪误差限定在允许范围内,设计基于扩张状态观测器的反步(Backstepping)控制器;最后,根据Lyapunov稳定性理论证明闭环系统的稳定性,并通过系统仿真验证所提出控制策略的有效性.  相似文献   

14.
王璐  苏剑波 《控制理论与应用》2013,30(12):1609-1616
本文针对飞行器姿态跟踪控制问题, 考虑系统的内部模型不确定性和外界扰动, 设计了使跟踪误差一致最终有界的控制器. 以四元数为姿态参数, 建立系统的非线性误差模型; 将控制系统分为内环观测器和外环控制器分别设计, 其中, 线性扩张状态观测器作为系统内环将实际系统补偿为标称模型, 而外环非线性控制器则用于镇定非线性标称系统. 最后, 利用Lyapunov理论得到了一致最终有界的稳定性结论, 并基于频域理论, 分析了线性扩张状态观测器阶次对系统性能的影响. 姿态跟踪实验表明, 本文设计的控制系统能够有效实现飞行器的姿态跟踪控制.  相似文献   

15.
针对一类状态未知的非线性严格反馈时滞系统, 本文提出了一种基于静态增益函数的输出反馈控制方案. 首先构造了降阶观测器以估计非线性系统的未知状态. 然后在Backstepping设计的每一步定义了具有控制增益函数 的新型Lyapunov-Krasovskii泛函以补偿未知时变时滞, 定义新的选择不唯一的连续控制增益函数以补偿非匹配项 以及Lyapunov-Krasovskii泛函补偿时滞时产生的非负项. 提出了一种无记忆输出反馈控制方案. 理论分析表明: 该 控制方案消除了未知时滞的影响, 保证了闭环系统所有信号的有界性, 并使系统实现渐近稳定. 最后仿真结果验证 了此控制方案的有效性.  相似文献   

16.
This article presents a novel adaptive bilateral control scheme for obtaining ideal responses for teleoperation systems with uncertainties. A condition that is equivalent to getting an ideal response in teleoperation has been found to be making the closed‐loop dynamics of master and slave manipulators a similar form. An adaptive approach is applied to achieve similarity for the uncertain master and slave manipulators. Using the similar closed‐loop dynamic characteristics of master/slave teleoperation systems, excellent position and force tracking performance has been obtained without estimating the impedance of human and environment. The validity of the theoretical results is verified by experiments. © 2001 John Wiley & Sons, Inc.  相似文献   

17.
王宁  王永 《自动化学报》2018,44(4):685-695
针对具有未知外界扰动和系统不确定性的四旋翼飞行器,提出了一种基于模糊不确定观测器(Fuzzy uncertainty observer,FUO)的自适应动态面轨迹跟踪控制方法.通过将四旋翼飞行器系统分解为位置、姿态角和角速率三个动态子系统,使得各子系统虚拟控制器能够充分考虑欠驱动约束;采用一阶低通滤波器重构虚拟控制信号及其一阶导数,实现四旋翼跟踪控制设计的迭代解耦;设计了一种模糊不确定观测器,用以估计和补偿未知外界扰动与系统不确定性,从而确保闭环系统的稳定性和跟踪误差与其他系统信号的一致有界性.仿真研究验证了所提出的控制方法的有效性和优越性.  相似文献   

18.
针对具有多变量、非线性、强耦合和不确定性的可逆冷带轧机速度张力系统,提出了一种基于扩张状态观测器(extended state observer,ESO)的全局积分滑模自适应反步分散控制方法.首先,采用机理建模方法,建立了相对完备的可逆冷带轧机速度张力多变量耦合系统的数学模型.其次,将各子系统的耦合项和不确定项看成外扰,通过构造的ESO对其进行动态观测,并分别引入所设计的全局积分滑模自适应反步控制器中进行补偿,速度张力系统实现了有效的动态解耦和协调控制.理论分析表明,所提出的控制方法能够保证滑模面的渐近稳定和闭环系统的渐近跟踪性能.最后,基于某1422mm可逆冷带轧机速度张力系统的实际数据进行仿真,结果验证了所提方法的有效性.  相似文献   

19.
本文针对双电机同步驱动伺服系统中执行器失效会导致系统性能下降甚至失稳的情况,提出了一种基于自适应滑模的故障诊断和容错控制策略.该方法通过设计各电机转速的自适应滑模状态观测器,在线估计各执行器的失效因子:当单个执行器部分失效时,通过自适应的方法调整控制器增益;当单个执行器全部失效时,重构系统的控制律.对于系统中存在非匹配不确定项的情况,提出在期望虚拟信号中引入基于扩张状态观测器的补偿项抑制方案;利用Lyapunov理论证明了闭环系统在正常和故障状况下的稳定性以及观测器的收敛性;仿真结果表明,所设计的控制策略能保证系统稳定跟踪指令信号,在单个执行器失效的情况下系统跟踪性能基本不下降.  相似文献   

20.
In this paper, a novel control scheme is proposed to guarantee global asymptotic stability of bilateral teleoperation systems that are subjected to time-varying time delays in their communication channel and sandwich linearity in their actuators. This extends prior art concerning control of nonlinear bilateral teleoperation systems under time-varying time delays to the case where the local and the remote robots’ control signals pass through saturation or similar nonlinearities that belong to a class of systems we name sandwich linear systems. Our proposed controller is similar to the proportional plus damping (P+D) controller with the difference that it takes into account the actuator saturation at the outset of control design and alters the proportional term by passing it through a nonlinear function; thus, we call the proposed method as nonlinear proportional plus damping (nP+D). The asymptotic stability of the closed-loop system is established using a Lyapunov–Krasovskii functional under conditions on the controller parameters, the actuator saturation characteristics, and the maximum values of the time-varying time delays. To show the effectiveness of the proposed method, it is simulated on a variable-delay teleoperation system comprising a pair of planar 2-DOF robots subjected to actuator saturation. Furthermore, the controller is experimentally validated on a pair of 3-DOF PHANToM Premium 1.5A robots, which have limited actuation capacity, that form a teleoperation system with a varying-delay communication channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号