首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the energetic, demographic and the climatic challenges faced today, we designed a combined food and energy (CFE) production system integrating food, fodder and mixed belts of Salix, Alnus and Corylus sp. as bioenergy belts. The objective was to assess the shoot dry weight-stem diameter allometric relationship based on stem diameter at 10 (SD10) and 55 cm (SD55) from the shoot base in the mixed bioenergy belts. Allometric relations based on SD10 and SD55 explained 90–96% and 90–98% of the variation in shoot dry weights respectively with no differences between the destructive and the non-destructive methods. The individual stool yields varied widely among the species and within willow species with biomass yield range of 37.60–92.00 oven dry tons (ODT) ha−1 in 4-year growth cycle. The biomass yield of the bioenergy belt, predicted by allometric relations was 48.84 ODT ha−1 in 4-year growth cycle corresponding to 12.21 ODT ha−1 year−1. The relatively high biomass yield is attributed to the border effects and the ‘fertilizing effect’ of alder due to nitrogen fixation, benefitting other SWRC components. On termination of 4-year growth cycle, the bioenergy belts were harvested and the biomass yield recorded was 12.54 ODT ha−1 year−1, in close proximity to the biomass yield predicted by the allometric equations, lending confidence and robustness of the model for biomass yield determination in such integrated agro-ecosystem.  相似文献   

2.
This work describes the design optimisation and techno-economic analysis of an off-grid Integrated Renewable Energy System (IRES) designed to meet the electrical demand of a rural village location in West Bengal – India with an overall electrical requirement equivalent to 22 MWh year−1. The investigation involved the modelling of seven scenarios, each containing a different combination of electricity generation (anaerobic digestion with biogas combined heat and power (CHP) and photovoltaics) and storage elements (Vanadium redox batteries, water electrolyser and hydrogen storage with fuel cell). Micro-grid modelling software HOMER, was combined with additional modelling of anaerobic digestion, to scale each component in each scenario considering the systems' ability to give a good quality electricity supply to a rural community. The integrated system which contained all of the possible elements – except hydrogen production and storage presented the lowest capital ($US 71 k) and energy cost ($US 0.289 kWh−1) compared to the scenarios with a single energy source. The biogas CHP was able to meet the electrical load peaks and variations and produced 61% of the total electricity in the optimised system, while the photovoltaics met the daytime load and allowed the charging of the battery which was subsequently used to meet base load at night.  相似文献   

3.
《Biomass & bioenergy》2007,31(5):276-283
Belgium, being an EU country, has committed itself to a 7.5% reduction of greenhouse gas emissions during the first commitment period of the Kyoto Protocol. Within this framework, the Flemish government aims at reaching a share of 6% of renewable electricity in the total electricity production by 2010. In this work, the biomass production of birch, maple, poplar and willow in a short-rotation forestry (SRF) plantation after a 4-year growth period served as the base to calculate the amount of (electrical) energy that could be produced by this type of bioenergy crop in Flanders. The maximum amount of electricity that could be provided by SRF biomass was estimated at 72.9 GWhe year−1, which only accounts for 0.16% of the total electricity production in this region. Although the energy output was rather low, the bioenergy production process under consideration appeared to be more energy efficient than energy production processes based on fossil fuels. The high efficiency of birch compared to the other species was mainly due to the high calorific value of the birch wood. The maximum CO2 emission reduction potential of SRF plantations in Flanders was estimated at only 0.09% of the total annual CO2 emission. The most interesting application of SRF in Flanders seemed to be the establishment of small-scale plantations, linked to a local combined heat and power plant. These plantations could be established on marginal arable soils or on polluted sites, and they could be of importance in the densely populated area of Flanders because of other environmental benefits, among which their function as (temporary) habitat for many species.  相似文献   

4.
《Biomass & bioenergy》2005,28(5):475-489
Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach.The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4–21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg−1).In the GHG emissions analysis, nitrous oxide (N2O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha−1 year−1 and N2O emissions from soil are 0.5–2.8 kg N ha−1 year−1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260–922 g CO2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41–61% km−1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions.  相似文献   

5.
Hydrogen is a clean fuel capable of promoting sustainable energy development. The effective use of surplus energy from wind plants appears as a promising method to produce hydrogen. Accumulating surplus energy through hydrogen production and storage can solve the problem of energy excess, making energy available on-demand. This article explored the potential of hydrogen production from wind energy in three distinct scenarios of surplus energy, and the amount of electricity generation for Brazil and its regions. To a scenario of 6-h of energy excess, the potential for hydrogen production from wind energy was equal to 1.48E + 07 Nm3.d−1. The state of Rio Grande do Sul reached a potential of 1.10E+06 MWh.month-1 of electricity generation using H2. Taking into account a payback-time of 3.5 years, the cost of hydrogen production was 0.402 US$.kWh−1. Hydrogen ensures greater energy security in times of energy shortages through biofuel storage. The main goal was to show the possibilities of diversifying the national electrical matrix and the wind resources contribution to the Circular and H2 Economy in the country.  相似文献   

6.
《Biomass & bioenergy》2006,30(4):296-303
Mitigating global climate change via CO2 emission control and taxation is likely to enhance the economic potential of bioenergy production and utilization. This study investigated the cost competitiveness of woody biomass for electricity production in the US under alternative CO2 emission reductions and taxes. We first simulated changes in the price of coal for electricity production due to CO2 emission reductions and taxation using a computable general equilibrium model. Then, the costs of electricity generation fueled by energy crops (hybrid poplar), logging residues, and coal were estimated using the capital budgeting method. Our results indicate that logging residues would be competitive with coal if emissions were taxed at about US$25 Mg−1 CO2, while an emission tax US$100 Mg−1 CO2 or higher would be needed for hybrid poplar plantations at a yield of 11.21 dry Mg ha−1 yr−1 (5 dry tons ac−1 yr−1) to compete with coal in electricity production. Reaching the CO2 emission targets committed under the Kyoto Protocol would only slightly increase the price of fossil fuels, generating little impact on the competitiveness of woody biomass. However, the price of coal used for electricity production would significantly increase if global CO2 emissions were curtailed by 20% or more. Logging residues would become a competitive fuel source for electricity production if current global CO2 emissions were cut by 20–30%. Hybrid poplar plantations would not be able to compete with coal until emissions were reduced by 40% or more.  相似文献   

7.
Growing biomass on non-agricultural land could potentially deliver renewable energy services without displacing land from food production, avoiding the social and environmental conflicts associated with bioenergy. A variety of derelict underutilized and neglected land types are possible candidates, sharing a number of challenges for agronomy, including contaminants in soils, potential uptake and dispersion through energy use. Most previous field trials have grown woody biomass species during phytoremediation. Five one-hectare brownfield sites in NE England, were each amended with c.500 t ha−1 of green-waste compost, planted with short-rotation coppice willow, Miscanthus, reed canarygrass and switchgrass,1 and then harvested for 3–5 years.Critical issues for the economic and environmental viability of energy production on brownfield land were investigated: The yields achieved on non-agricultural land; the potential for fuel contamination; the suitability for use and potential markets for any biomass produced. RCG appears best suited to the challenging soil conditions found on non-agricultural land, outperforming other species in ease of establishment, cost, time to maturity, yield and contamination levels. Invasive spreading and low melting ash compositions were not observed. Annual yields of 4–7 odt ha−1 from the second growth season were found consistently across a range of previously-developed, capped or former landfill sites, with a gross annual energy yield of 97 GJ ha−1 at contamination levels acceptable for domestic pellets. The analogy with marginal agricultural land suggests that this species and approach could help boost biomass production while avoiding the natural capital “nexus” related to global food-fuel-land-water limits.  相似文献   

8.
In this study, hydrogen production and storage were investigated. The Transient System Simulation Program (TRNSYS) and Generic Optimization Program (GenOpt) packages were combined for the design and optimization of a system that produces hydrogen from water and stores the hydrogen it produced in the compressed gas tank. The system design is based on the electricity grid. Electrical energy produced in photovoltaic (PV) panels was used to electrolyze water. The systems for Izmir, Istanbul and Ankara provinces which are in different climate zones of Turkey were optimized and the annual system performances based on the optimum angles were analyzed. For the mentioned provinces, the PV tilt angles which minimize electricity drawn from the grid at the electrolyzer are also investigated. The electrical energy produced in the photovoltaic panels, the hydrogen and oxygen amounts produced, the efficiency of the electrolyzer, the gas and pressure levels in the hydrogen tank were compared. According to the results of the analysis, the annual total power produced in photovoltaic panels is 42803.66 kW in İzmir, 42573.74 kW in Istanbul and 44613.95 kW in Ankara. Hydrogen levels produced in the system are calculated as 10488.39 m3 year−1 in Izmir, 9824.70 m3 year−1 in Istanbul, and 10368.65 m3 year−1 in Ankara.  相似文献   

9.
The performance of a novel electro-reformer for the production of hydrogen by electro-reforming alcohols (methanol, ethanol and glycerol) without an external electrical energy input is described. This tandem cell consists of an alcohol fuel cell coupled directly to an alcohol reformer, negating the requirement for external electricity supply and thus reducing the cost of operation and installation. The tandem cell uses a polymer electrolyte membrane (PEM) based fuel cell and electrolyser. At 80 °C, hydrogen was generated from methanol, by the tandem PEM cell, at current densities above 200 mA cm−2, without using an external electricity supply. At this condition the electro-reformer voltage was 0.32 V at an energy input (supplied by the fuel cell component) of 0.91 kWh/Nm3; i.e. less than 20% of the theoretical value for hydrogen generation by water electrolysis (4.7 kWh/Nm3) with zero electrical energy input from any external power source. The hydrogen generation rate was 6.2 × 10−4 mol (H2) h−1. The hydrogen production rate of the tandem cell with ethanol and glycerol was approximately an order of magnitude lower, than that with methanol.  相似文献   

10.
Grass from urban roadside verges is a potential, though widely unused, resource for bioenergy recovery. Two possible bioenergy recovery techniques were tested, i.e. i) direct anaerobic digestion of the whole parent material and ii) the “integrated generation of solid fuel and biogas from biomass” (IFBB) procedure, which divides biomass into a press fluid and a press cake by mashing and mechanical dewatering. Biomass yield, chemical composition and canopy height of biomass, contribution of functional groups, fermentation characteristics of silage and press fluids, as well as characteristics of the produced solid fuel was investigated, applying a 4-cut management for anaerobic digestion, a 2-cut management for IFBB and an 8 times mulching as a reference. Mean annual biomass yield (2013 and 2014) was 3.24, 3.33 and 5.68 t dry matter ha−1 for the mulching, 4-cut management and 2-cut management, respectively. Yields were higher in 2014 due to more favourable weather conditions. Fibre concentration was higher in material of the 2-cut management than in the 4-cut management, however, methane yield of the corresponding silages was the same. Highest methane yield was gained from press fluids with 292 lN kg−1 volatile solids. The press cake had a lower heating value of 16 MJ kg−1 dry matter and a K2O/CaO index of 0.51–0.88. Gross energy output was 26.4 GJ ha−1 for anaerobic digestion and 84.4 GJ ha−1 for IFBB. Thus, an altered roadside verge management with reduced cutting frequency might allow a significant energy recovery and improved ecosystem services, i.e. increased biodiversity.  相似文献   

11.
Sweet sorghum (Sorghum bicolor L. Moench) is a widely adapted sugar crop with high potential for bioenergy and ethanol production. Sweet sorghum can yield more ethanol per unit area of land than many other crops especially under minimum input production. Sweet sorghum is well-adapted to marginal growing conditions such as water deficits, water logging, salinity, alkalinity, and other constraints. Sweet sorghum potential exists for ethanol yield of 6000 L ha−1 with more than three units of energy attained per unit invested. Traditionally, sweet sorghum has served as a syrup crop and its culture and production are well understood. Sweet sorghum is genetically diverse and variations exits for characteristics such as Brix % (13–24), juice sucrose concentration (7.2–15.5%), total stalk sugar yield (as high as 12 Mg ha−1), fresh stalk yield (24–120 Mg ha−1), biomass yield (36–140 t ha−1) and others indicating potential for improvement. Transitioning sweet sorghum to a bioenergy crop is hampered by inadequate technology for large-scale harvest, transport and storage of the large quantities of biomass and juice produced, especially where the harvest window is short. Conversion of sweet sorghum to ethanol can be achieved by fermenting juice expressed from stems or directly fermenting chopped stalks. Integration of the fermentation and distillation of sweet sorghum juice in corn ethanol plants has not yet been achieved.  相似文献   

12.
The area used for bioenergy feedstock production is increasing because substitution of fossil fuels by bioenergy is promoted as an option to reduce greenhouse gas (GHG) emissions. However, agriculture itself contributes to rising atmospheric nitrous oxide (N2O) and methane (CH4) concentrations. In this study we tested whether the net exchanges of N2O and CH4 between soil and atmosphere differ between annual fertilized and perennial unfertilized bioenergy crops. We measured N2O and CH4 soil fluxes from poplar short rotation coppice (SRC), perennial grass-clover and annual bioenergy crops (silage maize, oilseed rape, winter wheat) in two central German regions for two years. In the second year after establishment, the N2O emissions were significantly lower in SRC (<0.1 kg N2O–N ha−1 yr−1) than grassland (0.8 kg N2O–N ha−1 yr−1) and the annual crop (winter wheat; 1.5 kg N2O–N ha−1 yr−1) at one regional site (Reiffenhausen). However, a different trend was observed in the first year when contents of mineral nitrogen were still higher in SRC due to former cropland use. At the other regional site (Gierstädt), N2O emissions were generally low (<0.5 kg N2O–N ha−1 yr−1) and no crop-type effects were detected. Net uptake of atmospheric CH4 varied between 0.4 and 1.2 kg CH4–C ha−1 yr−1 with no consistent crop-type effect. The N2O emissions related to gross energy in the harvested biomass ranged from 0.07 to 6.22 kg CO2 equ GJ−1. In both regions, Gierstädt (low N2O emissions) and more distinct Reiffenhausen (medium N2O emissions), this energy yield-related N2O emission was the lowest for SRC.  相似文献   

13.
Knowledge of the energy potential of an agricultural soil and the potential production of biomass, together with economic parameters, can help pinpoint more effective sites for growing plants for traditional purposes and for fuel production. There is approximately 10 206 PJ of potential energy accumulated in Slovakia's agricultural soils. The lowest utilisation was found in the Cambisols soil type (0.7–1.8%) and the highest in Regosols (3.1–7.0%). The bioenergy production potential of agricultural soils in Slovakia was determined for chosen soil parameters according to the production of the plants grown. With regard to energy, the most productive are soils of the Chernozem type (25.1 MJ m−2) and Mollic Fluvisols (22.5 MJ m−2). Gleysols, Histosols, Solonetz and Leptosols (3.0–5.0 MJ m−2) produce the lowest bioenergy levels. The highest energy production precondition (22.2 MJ m−2) occurs in soils in the very warm, very dry lowland climatic region. According to the granularity, the most energy (14.0–15.0 MJ m−2) is produced by deep clayey soils (18.0 MJ m−2) in a slope to 3° (18.3 MJ m−2) that are not or sporadically gravelly (19.2 MJ m−2). The highest energy yields can be expected from the biomass of plants grown in arable land (approximately 11.0 MJ m−2). Regarding the efficiency of economic and financial inputs, plants growing in Chernozem, Mollic Fluvisols, Fluvisols and Haplic Luvisols soil types in very warm, very dry, lowlands to warm, very dry, basin-like, continental climatic regions appear to be profitable in slopes to 7°, with no or only a sporadic gravel content.  相似文献   

14.
The rising price of fossil fuel and the increasing environmental concern encourage the use of biomasses as energy sources. Aim of this study was to compare two poplar SRC and vSRC (6 and 3 years rotation cycle) with an annual crop (maize), used for biomass production in north Italy.The average of the biomass production was 13.9 Mg DM ha−1 per year for the SRC and vSRC poplar and 19.2 Mg DM ha−1 for the maize.The energy consumption for the poplar cultivations was about 15 GJ ha−1 per year, which represented only the 6% of the energy biomass product (about 257 GJ ha−1 per year).The input value of the maize was higher (26.8 GJ ha−1 per year). In this case, the input value was about the 7% of the energy content in the biomass product (about 370 GJ ha−1 per year).During the vSRC cultivation an amount of 8090 kg CO2 eq ha−1 was emitted, 6420 kg CO2 eq ha−1 for the SRC and 26,370 kg CO2 eq ha−1 for the maize.Compared to the maize, the poplar SRC (or vSRC) crops are interesting from an energetic point of view, while maize requires less manpower, but it has major problems related to the landscape biodiversity.  相似文献   

15.
In this study a non-parametric method of Data Envelopment Analysis (DEA) is used to estimate the energy efficiencies of soybean producers based on eight energy inputs including human labor, diesel fuel, machinery, fertilizers, chemicals, water for irrigation, electricity and seed energy and single output of grain yield. The study also helps to rank efficient and inefficient farmers and to identify optimal energy requirement and wasteful uses of energy. Data were collected using face-to-face surveys from 94 farms in Golestan province which is the most important center of soybean production in Iran. Based on the results, average yield and energy consumption for soybean production were 3233.15 kg ha−1 and 35372.23 MJ ha−1, respectively. Also, the results of DEA application showed that, the technical, pure technical and scale efficiencies of farmers were 0.853, 0.919 and 0.926, respectively. Moreover, energy saving target ratio for soybean production was calculated as 20.12%, indicating that by following the recommendations resulted from this study, about 7116.84 MJ ha−1 of total input energy could be saved while holding the constant level of soybean yield. Also, electrical energy had the highest share (78.08%) from total saving energy, followed by fertilizers (10.46%) and diesel fuel (6.18%) energy inputs.  相似文献   

16.
Miscanthus is emerging as a potential bioenergy crop because of its high yield and ability to reduce greenhouse gas emissions. However, there is a lack of data on harvesting machinery performance for the USA conditions, and influence of yield on harvesting cost and fuel consumption. This study quantified performance of a mower-conditioner and a large square baler for Illinois conditions, and investigated influence of yield on fuel consumption and harvesting costs. To calculate performance parameters, a field area was segmented from which a bale was formed. Then in the segmented field area, yield and machine performance parameters were determined. The mower-conditioner's field capacity was 1.8 ha h−1, and diesel consumption was 19.2 L ha−1. The baler's field capacity was 1.4 ha h−1, and diesel consumption was 19.7 L ha−1. The mowing cost was 4.8 $ Mg−1, and baling cost was 6.8 $ Mg−1. An inverse correlation (R2 = 0.62) was found between miscanthus yield and harvesting cost ($ Mg−1), and a direct correlation (R2 = 0.67) was found between miscanthus yield and fuel consumption (L ha−1). It is expected that this study would help in more accurate assessment of environmental impact and economic feasibility of miscanthus, and may lead to further studies for quantifying crop yield and machine performance interactions.  相似文献   

17.
Previous studies by the authors have shown that energy savings in pulp and paper mills offer opportunities for increased electricity production on‐site or wood fuel export. The energy export implies reductions in CO2 emissions off‐site, where fossil fuel or fossil‐fuel‐based electricity is replaced. To assess this potential and the related profitability for a future situation, four energy market scenarios were used. For a typical Scandinavian mill, the potential for CO2‐emission reductions was 15–140 kton year?1 depending on the scenario and the form of energy export. Extrapolated to all relevant mills in Sweden, the potential was 0.4–3.1 Mton year?1, which is in the order of percent of the Swedish CO2 emissions. Wood fuel export implies larger reduction in CO2 emissions in most scenarios. In contrast, electricity export showed better economy in most of the cases studied; with annual earnings of 5–6 M€, this is an economically robust option. In the market pulp mill investigated, the wood fuel export was in the form of lignin. Lignin could possibly be valued as oil, regarding both price and potential for CO2‐emission reduction, making lignin separation an option with good profitability and large reductions of CO2 emissions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Marginal land of the Lower Mississippi Alluvial Valley (LMAV) has the potential to be utilized for substantial production of bioenergy feedstocks. However, resulting ecosystem services associated with dedicated bioenergy crop production, such as soil respiration and carbon dioxide (CO2) emissions, which play an important role in global carbon (C) cycling, are not well understood. The objective of this study was to evaluate the effects of land use [i.e., switchgrass (Panicum virgatum) and eastern cottonwood (Populus deltoides) grown as dedicated bioenergy crops and a soybean (Glycine max)-grain sorghum (Sorghum bicolor) agroecosystem rotation] on monthly respiration and estimated annual CO2 emissions for 2012 and 2013 from a silt -loam soil in east-central Arkansas. Peak monthly fluxes achieved each year differed (p < 0.05) somewhat among ecosystems. Annual CO2 emissions differed among ecosystems (p < 0.001), but not between years (p = 0.45). Cottonwood emitted less CO2 in both years (7.3 and 7.4 Mg ha−1 for 2012 and 2013, respectively) compared to the other two ecosystems, while emissions from the switchgrass did not differ from those from the soybean in 2012 (10.3 and 9.5 Mg ha−1, respectively) or grain sorghum in 2013 (9.7 and 9.2 Mg ha−1, respectively). Results showed established bioenergy feedstock cropping systems do not have greater soil CO2 emissions compared with a traditional soybean-grain sorghum crop rotation. Results also indicated that different bioenergy feedstocks can produce different quantities of CO2 emissions, which may be important to consider when converting marginal lands to bioenergy feedstock cropping systems.  相似文献   

19.
Increasing electricity supply in Sub-Saharan Africa is a prerequisite to enable economic development and reduce poverty. Renewable sources such as wood-fueled power plants are being promoted for social, environmental and economic reasons. We analyzed an economic model of a vertically integrated system of short-rotation woody crops (SRWC) plantations coupled with a combined heat and power (CHP) plant under Sub-Saharan African conditions. We analyzed a 5 MW (electric) base-case scenario under Ugandan conditions with a 2870 ha Eucalyptus grandis plantation and a productivity of 12 t ha−1 y−1 (oven dry basis) under a 5-year rotation. Plant construction and maintenance constituted 27% and 41% of total costs, respectively. Plantation productivity, carbon credit sales as well as land, fuel, labor & transport costs played an economic minor role. Highly influential variables included plant efficiency & construction costs, plantation design (spacing and rotation length) and harvest technologies. We conclude that growing 12–24 t ha−1 y−1 at a five year rotation can produce IRR's of 16 and 19% over 30-years, respectively. Reducing rotation length significantly reduced short-term financial risk related to frontloaded costs and relatively late revenues from electricity sales. Long-term feed-in tariffs and availability of a heat market played a significant economic role. The base-case scenario's 30-year IRR dropped from 16% to 9% when a heat market was absent. Results suggest a leveling-off of economies-of-scale effects above 20 MW (electric) installations. Implementation-related research needs for pilot activities should focus on SRWC productivity and energy life cycle analysis.  相似文献   

20.
This study is to evaluate the potential for development of a cellulosic ethanol facility in Vietnam. Rice straw is abundant in Vietnam and highly concentrated in the Mekong Delta, where about 26 Mt year−1 of rice straw has been yearly produced. To minimize the overall production cost (PC) of ethanol from rice straw, it is crucial to choose the optimal facility size. The delivered cost of rice straw varied from 20.5 to 65.4 $ dry t−1 depending on transportation distance. The Mekong Delta has much lower rice straw prices compared with other regions in Vietnam because of high density and quantity of rice straw supply. Thus, this region has been considered as the most suitable location for deploying ethanol production in Vietnam. The optimal plant size of ethanol production in the region was estimated up to 200 ML year−1. The improvement in solid concentration of material in the hydrothermal pre-treatment step and using residues for power generation could substantially reduce the PC in Vietnam, where energy costs account for the second largest contribution to the PC, following only enzyme costs. The potential for building larger ethanol plants with low rice straw costs can reduce ethanol production costs in Vietnam. The current estimated production cost for an optimal plant size of 200 ML year−1 was 1.19 $ L−1. For the future scenario, considering improvements in pre-treatment, enzyme hydrolysis steps, specific enzyme activity, and applying residues for energy generation, the ethanol production cost could reduce to 0.45 $ L−1 for a plant size of 200 ML year−1 in Vietnam. These data indicated that the cost-competitiveness of ethanol production could be realized in Vietnam with future improvements in production technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号