首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究复配增容剂(SEPS/PP-g-MAH)对玻璃纤维(GF)增强聚苯醚(PPO)/聚丙烯(PP)力学性能、熔体流动性以及耐热性能的影响,并用扫描电子显微镜观察了不同共混体系的形态结构.结果表明,复配增容剂改善了PPO/PP/GF共混体系的相容性,提高了共混体系的拉伸强度、弯曲强度、冲击强度和熔体流动速率,但同时降低了...  相似文献   

2.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Styrene–ethylene‐propylene–styrene triblock copolymer (SEPS), a thermoplastic elastomer (TPE) was blended with polyamide‐6 (PA6) in an attempt to improve the retraction properties of the TPE. A maximum loading of 30 wt % of polyamide was incorporated into SEPS using twin‐screw compounding. Various reactive compatibilisers were also incorporated at a maximum loading of 10 wt %. The blends were evaluated in terms of their tensile, dynamic mechanical, and rheological behavior. Design of experiments (DOE) was used to study the effect of blending variables on the tensile properties of the blends. Complex interactions between these variables were identified using this approach. It was shown that by incorporating PA6 into SEPS, in conjunction with a compatibilizer, blends with superior retraction properties and increased tensile strength could be obtained. A mean hysteresis of 54.2 ± 0.7% was recorded for a blend containing 5 wt % PA6 and 4 wt % compatibilizer compared to 58.5 ± 0.5% for virgin SEPS. The tensile strength of this blend was almost 75% higher than virgin SEPS. Further evidence of the benefit of incorporating a reactive compatibilizer was the absence of a distinct polyamide relaxation in the dynamic mechanical thermograms for the compatibilized blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with ethylene–butylacrylate–glycidyl methacrylate copolymer (PTW) and ethylene‐1‐octylene copolymer (POE) in a twin‐screw extruder. The mechanical properties of PBT/PC blends were investigated. The presence of PTW or POE could improve the mechanical properties except for the tensile strength and flexural properties of the PBT/PC blends. However, a combination use of PTW and POE had a strong synergistic effect, leading to remarkable increases in the impact strength, elongation at break, and Vicat temperature and some reduction of the tensile strength and flexural properties. The relationship between mechanical properties and morphology of the PBT/PC/PTW/POE blends was studied. The morphology was observed by scanning electron microscopy and the average diameter of dispersed phase was determined by image analysis, and the critical interparticle distance for PBT/PC was determined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 54–62, 2006  相似文献   

6.
In this study, the efficiency of dicumyl peroxide (DCP) in combination with N,N′‐m‐phenylene‐bis‐maleimide (BMI) as a crosslinking system for the polypropylene (PP)/nitrile rubber (NBR) (30 : 70 wt %) thermoplastic elastomers was investigated in the presence of compatibilizing agents. The compatibilization was carried out by maleic anhydride‐grafted‐PP (PP‐g‐MA)/amino compound and glycidyl methacrylate‐grafted‐PP (PP‐g‐GMA) with or without amino compound. They were employed in a proportion of 5 wt % together with different amounts of carboxylated NBR (XNBR). Excellent mechanical properties were achieved without the addition of compatibilizer, suggesting that BMI should act as compatibilizing agent. The other functionalized systems exerted an additional improvement on tensile properties and reprocessing ability. The mechanical and dynamic mechanical properties, oil resistance, and morphology were investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The rheological and tensile properties and the morphology of polypropylene (PP)/ethylenepropylene-diene terpolymer(EPDM)/ionomer ternary blends were investigated, using a rheometric dynamic spectrometer (RDS), a dynamic mechanical thermal analyzer (DMTA), a tensile tester, and a scanning electron microscope (SEM). Two kinds of poly(ethylene-co-methacrylic acid) (EMA) ionomers, neutralized with different metal ions (Na+ and Zn++), were used. Blends were melt-mixed, using a laboratory internal mixer at 190°C. The composition of PP and EPDM was fixed at 50/50 by wt % and the EMA ionomer contents were varied from 5 to 20 wt %, based on the total amount of PP and EPDM. It was found that the ternary blends, containing Na-neutralized ionomer, showed considerably different rheological properties and morphology as compared to the PP/EPDM binary blends, due to the compatibilizing effect of the ionomer for PP and EPDM, while the ternary blends, containing the Zn-neutralized ionomer, did not. The compatibilizing effect was most prominent at 5 wt % ionomer concentration. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The effect of a compatibilizer on the properties of corn starch‐reinforced metallocene polyethylene–octene elastomer (POE) blends was studied. The compatibility between POE and starch was improved markedly with an acrylic acid‐grafted POE (POE‐g‐AA) copolymer as a compatibilizer. Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, differential scanning calorimetry, and scanning electron microscopy were used to examine the blends produced. The size of the starch phase increased with an increasing content of starch for noncompatibilized and compatibilized blends. The POE/starch blends compatibilized with the POE‐g‐AA copolymer lowered the size of the starch phase and had a fine dispersion and homogeneity of starch in the POE matrix. This better dispersion was due to the formation of branched and crosslinked macromolecules because the POE‐g‐AA copolymer had anhydride groups to react with the hydroxyls. This was reflected in the mechanical properties of the blends, especially the tensile strength at break. In a comparison with pure POE, the decrease in the tensile strength was slight for compatibilized blends containing up to 40 wt % starch. The POE‐g‐AA copolymer was an effective compatibilizer because only a small amount was required to improve the mechanical properties of POE/starch blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1792–1798, 2002  相似文献   

9.
S.H. Lee  C.B. Park 《Polymer》2010,51(5):1147-665
This paper reports the effect of nanosilica (SiO2) on the morphology of co-continuous immiscible polypropylene (PP)/polyolefin elastomer (POE) blends. The unfilled blends display phase inversion and a co-continuous structure at a ratio of 50/50 PP/POE by weight. Upon addition of SiO2 in the presence of maleated PP compatibilizer a finer structure, consisting of elongated POE particles dispersed within the PP phase is obtained. This transformation is associated to the presence of finely dispersed SiO2 particles that are localized exclusively within the PP matrix. The impact properties, flexural and Young's moduli of the blends increase significantly, pointing to a synergistic effect arising from the presence of the reinforced PP phase, containing high amounts of the finely dispersed elastomeric phase.  相似文献   

10.
Abstract:

Several epoxy oligomers, A-X-A series, in which the A represents epoxy group, and the X is molecular block between epoxy groups, were synthesized or selected to compatibilize the blends of polysulfone (PSF)/a semiaromatic Thermotropic Liquid Crystalline Polymer (TLCPA1) and the blends of polycarbonate (PC)/TLCPA1. The results of Differential Scanning Calorimetry (DSC), Scanning Electronic Microscopy (SEM), and mechanical properties measurement of these compatibilized blends showed that the compatibilizing effects of these epoxy oligomers relied on the structure and the spacing block length of X. Among them, one new epoxy oligomer, which was made from allyl bisphenol-A and E-44 (a bisphenol-A epoxy resin, epoxy equivalent: 230), has been demonstrated to be a highly efficient compatibilizer for PSF/TLCPA1 blends. Adding 2% of this compatibilizer to PSF/TLCPA1 blend led to a 6.7% and 9.7% increase of bending strength and tensile strength, respectively.  相似文献   

11.
PP/POE共混物力学性能研究   总被引:2,自引:1,他引:1  
用双螺杆挤出机制备了聚丙(烯PP)/聚烯烃弹性(体POE)共混物,研究了POE用量对PP/POE共混物冲击性能、拉伸性能及弯曲性能的影响。结果表明:随着POE含量的增加,PP/POE共混物的冲击强度明显提高;拉伸强度及拉伸模量弯、曲强度及弯曲模量、断裂伸长率及断裂强度均减小。  相似文献   

12.
The effect of epoxidized natural rubber (ENR) or polyethylene acrylic acid (PEA) as a compatibilizer on properties of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends was studied. 5 wt.% of compatibilizer was employed in EVA/SMR L blend and the effect of compatibilizer on tensile properties, thermal properties, swelling resistance, and morphological properties were investigated. Blends were prepared by using a laboratory scale of internal mixer at 120°C with 50 rpm of rotor speed. Tensile properties, thermal properties, thermo-oxidative aging resistance, and oil swell resistance were determined according to related ASTM standards. The compatibility of EVA/SMR L blends with 5 wt.% of compatibilizer addition or without compatibilizing agent was compared. The EVA/SMR L blend with compatibilizer shows substantially improvement in tensile properties compared to the EVA/SMR L blend without compatibilizer. Compatibilization had reduced interfacial tension and domain size of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends.  相似文献   

13.
The effects of reactive compatibilizer and processing temperature on the morphology and the mechanical properties at the weld line of 60/40 (wt/wt) poly- carbonate (PC) and acrylonitrile-butadiene-styrene (ABS) copolymer blends were investigated. Amine functionalized styrene/n-phenyl maleimide/maleic anhydride terpolymer (amine-SPMIMA) was used as the in-situ reactive compatibilizer for PC/ABS blend. Weld tensile strength increased as the content of amine-SPMIMA was increased. Weld impact strength showed maximum value for the blend containing about 3% amine-SPMIMA. The variation in the mechanical property at the weld line was correlated with the change in the morphology of the blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Mechanical properties and morphologies of nylon 11/ethylene‐octene copolymer blends have been investigated. The ethylene‐octene copolymer (POE) employed in this study was grafted with maleic anhydride (MAH) and thus has the potential to react with the amine group of nylon 11. Nylon 11/POE‐g‐MAH and nylon 11/POE/POE‐g‐MAH blends with varying MAH graft ratios were prepared. In this paper, the effect of MAH graft ratio on ductile‐brittle transition temperature (DBTT), mechanical properties, and morphology of blends was studied. The results showed that incorporation of POE‐g‐MAH could remarkably improve the compatibility between the nylon and POE elastomers, thus increasing the toughness of the resultant blends. The compatibilizing effect on impact strength became more pronounced with increasing MAH graft ration. DBTTs of blends were initially lowered dramatically with the increasing maleic anhydride graft ratio, but over 0.56% MAH content, DBTTs of blends did not drop further, while tensile strength and tensile modulus dropped slightly because of the decreased glass transition temperature (Tg) of nylon 11/POE blends, resulting from the increased compatibility between the two phases. The role of MAH graft ratio on the POE particle size and dispersion of POE on nylon 11 matrix was also studied.  相似文献   

15.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   

16.
Simulations based on molecular dynamics and mesodyn theories were used to investigate the compatibility, morphology evolution of polypropylene/polycarbonate (PP/PC) blends, and the relationship between the composition and microstructure. Results of Flory–Huggins interaction parameters, integral structure factor, X‐ray intensity, free‐energy density, and order parameters all indicated that phase separations occurred in all PP/PC blend systems, and poor compatibility was exhibited for this polymer pair. The systems of PP/PC = 54/46, PP/PC = 31/69, and PP/PC = 18/82 showed stronger immiscibility and the faster separation process, while the systems of PP/PC = 82/18 and PP/PC = 5/95 showed less immiscibility and a slower separation process. Compared with the results of mechanical properties tests, the appearance of a cocontinuous structure obtained from simulation corresponds to the transition point of impact strength and tensile strength. After transition, the mechanical properties of the blends depended on the properties of the PC matrix, and the impact strength and tensile strength were both clearly enhanced. As the simulation steps increased, the morphology of PP/PC = 54/46 blend developed into a double‐lamellar structure by coarsening of PC phase from initial homogeneous configuration. In addition, the compatibilizing effect of SEBS was also investigated at the microscale, and varying the content of PS block in SEBS has little effect on the morphology of blend. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
采用双螺杆挤出机制备了聚对苯二甲酸丙二酯(PTT)/丙烯腈-丁二烯-苯乙烯塑料(ABS)合金,研究了合金组成及增容剂环氧树脂(EP)和苯乙烯-丁二烯-马来酸酐共聚物(SBM)对合金相形态及力学性能的影响.结果表明,未加增容剂的PTT/ABS合金相畴粗大,相界面清晰,合金的拉伸强度、弯曲强度随ABS含量的增加而逐渐降低,...  相似文献   

18.
在氢氧化镁(MH)与可膨胀石墨(EG)复配阻燃石蜡油改性苯乙烯-乙烯/丁烯-苯乙烯(SEBS)/聚丙烯(PP)共混物(O-SEBS/PP)体系中,用马来酸酐接枝聚丙烯(PP-g-MAH)增容,研究其对O-SEBS/PP/MH/EG阻燃复合体系结构和性能的影响。结果表明:以一定量的PP-g-MAH代替基体中的PP增容后,复合材料在保持UL94垂直燃烧V-0级的同时,拉伸强度(σmax)与100%定伸强度(σ100)随着PP-g-MAH用量的增加而增大,在质量分数为6%时,分别为13.4 MPa和9.0 MPa,较未添加PP-g-MAH时分别提高13.6%和76.5%;撕裂强度则下降4.0%。复合材料的毛细管流变实验和淬断面扫描电子显微照片分析表明:PP-g-MAH的加入改善了复合材料中MH、EG与O-SEBS/PP共混物基体间的界面黏合力,提高了相容性。  相似文献   

19.
PPS/PC共混物力学性能的研究   总被引:2,自引:0,他引:2  
测量丁聚苯硫醚/聚碳酸酯(PPS/PC)二元共混物的力学性能,并考察了PC含量对PPS/PC/EP(环氧树脂)共混体系力学性能的影响。结果表明,加入适量的PC树脂,可在一定程度上改善PPS树脂的拉伸强度、拉伸断裂强度、弯曲强度和冲击断裂韧性。  相似文献   

20.
增容剂EAA对PA6/POE共混体系的相态及性能的影响   总被引:12,自引:2,他引:10  
李小梅  王磊等 《中国塑料》2001,15(12):21-25
采用乙烯-丙烯酸共聚物(EAA)作为尼龙6/乙烯-1-辛烯共聚物弹性体(POE)共混体系的增容剂,详细研究了增容剂用量与共混体系的相态、力学性能和流变性能的关系。结果表明相容剂的加入使共混体系的分散性大大改善,分散相POE粒子明显细化,粒子较均匀地分散在PA6连续相中;相容剂的加入使体系韧性明显提高,拉伸强度和弯曲弹性模量下降,加工性能也得到改善,而且当每100份PA6/POE用量为85/15、EAA用量在4月份左右时,其增容作用达到饱和,综合性能达到最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号