首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four novel bis‐benzocyclobutene‐endcapped arylene ether monomers, 1,1′‐bis[4‐(4′‐benzocyclobutenyloxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane (BOPP3FE), 1,1′‐bis[4‐(4′‐benzocyclobutenyloxy)phenyl]‐1‐(3′,5′‐ditrifluoromethyl)phenyl‐2,2,2‐trifluoroethane(BOPP9FE), 2,2′‐bis[4‐(4′‐benzocyclobutenyloxy)phenyl]‐1,1,1,3,3,3‐hexfluoropropane (BOP6FP), and 2,2′‐bis[4‐(4′‐benzocyclobutenyloxy)phenyl]‐propane (BOPP) were prepared and characterized. All the four monomers showed similar curing behaviors under N2 (Differential scanning calorimetry: extrapolated onset and peak temperatures at 225–229°C and 261–263°C) and demonstrated low and steady melt viscosities between 110 and 200°C, indicating their good processability. After cure, the resulting BCB resins exhibited high Tg (232–282°C) and excellent thermal stability (T5% > 433°C). The resins also showed good mechanical properties with the flexural strengths of 68–88 MPa and the flexural modulus of 2.52–3.15 GPa. Moreover, the resins also exhibited low dielectric constants (2.58–2.88), low dissipation factors (2.7 to 8.4 × 10?4) and low water absorptions in boiling water for 24 h (0.29–0.59%). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
A novel bismaleimide (DOPO‐BMI) with unsymmetrical chemical structure and DOPO pendant group has been prepared. The particular molecular structure makes DOPO‐BMI show an intrinsic amorphous state with a Tg about 135°C and excellent solubility in most organic solvents, which is beneficial to the processability of bismaleimide composite materials. A series of bismaleimide‐triazine (BT) resins have been prepared based on DOPO‐BMI and 2,2‐bis(4‐cyanatophenyl)propane at various weight ratios. The prepared BT resins show outstanding solubility in organic solvent and low viscosity about 10–671 mPa s at 180°C. The cured BT resins exhibit high glass transition temperature (Tg) over 316°C. As the weight ratio of DOPO‐BMI increases to 80% (BT80), the Tg can rise to 369°C (tan δ). The cured BT resins also show good thermal stability with the 5% weight loss temperature over 400°C under both nitrogen and air atmosphere. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42882.  相似文献   

3.
Aromatic sulfone ether diamine, bis[4-(4-aminophenoxy)phenyl]-sulfone (SED), was prepared by the nucleophilic aromatic substitution of 4,4′-dichlorodiphenylsulphone by p-aminophenolate. The reaction was conducted in the presence of excess potassium carbonate as a weak base, toluene as the dehydrating agent and N-methylpyrrolidone as the dipolar aprotic solvent. SED showed good solubility in common organic solvents, such as dioxan, tetrahydrofuran, butanone and acetone. SED was reacted with maleic anhydride to obtain aromatic sulfone ether bismaleimide, bis[4-(4-maleimidophenoxy)phenyl]-sulfone (SEM). The compounds were characterized by FTIR and 1H NMR analysis. Furthermore, copolymer resins of SED with 4,4′-bismaleimidodiphenyl methane (BMI) and SEM were prepared. After curing, crosslinked resins with better thermal stability resulted. The temperature at maximum rate of weight loss (Tmax) and the heat-resistant temperature index (Ti) in air were found to be 426°C, 208°C and 579°C, 221°C for BMI/SED and SEM/SED resins, respectively. Compared with the corresponding 4,4′-diaminodiphenyl methane (DDM) system, BMI/SED and SEM/SED showed a slight decrease in Tmax and Ti SED-modified BMI/amine resin based glass cloth laminates for printed circuit boards showed higher mechanical properties than those of the corresponding unmodified system. With SED instead of the original amine component in 3–5% weight fraction, the tensile strength, flexural strength and impact strength of the laminates increased markedly. Meanwhile, the stripping strength and weld resistance were also improved by the addition of SED.  相似文献   

4.
Novel thermosetting monomers possessing both maleimide and propargyl groups were first designed and synthesized. The monomers included N‐(2‐propargyloxyphenyl) maleimide (2‐PPM), N‐(3‐propargyloxyphenyl) maleimide (3‐PPM), and N‐(4‐propargyloxyphenyl) maleimide (4‐PPM), and their structures were confirmed with Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and elemental analysis. The cure behaviors of these monomers were characterized with differential scanning calorimetry and FTIR spectroscopy, and the results indicated that the monomers had a broader processing window than normal bismaleimide (BMI) resins. The thermal properties of the cured monomers were characterized with thermogravimetric analysis and dynamic mechanical analysis. The 5% mass loss temperatures of the cured monomers were high (ca. 400°C), and the glass‐transition temperatures of cured 2‐PPM, 3‐PPM, and 4‐PPM were 386, 373, and 387°C, respectively, which were much higher than those of typical commercial blended BMI resins. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Prepolymerizations of 4,4′‐bismaleimidodiphenylmethane (BMI), diallyl isocyanurate (DAIC), and melamine (ML) at 160–170°C and subsequent compression molding at 200–280°C yielded cured BMI/DAIC/ML resins with feed molar ratios of 4/1/1, 3/1/1, and 2/1/1 (BMI‐DAIC‐ML411, 311, and 211). Similarly, cured BMI/DAIC 1/1 and BMI/ML 3/1 resins (BMI‐DAIC11 and BMI‐ML31) were prepared. The FT‐IR analysis revealed that the maleimide and allyl groups were almost consumed for all the cured resins, and the hydrogen bonding interaction became stronger with decreasing BMI contents for BMI‐DAIC‐MLs. Based on the cured structures elucidated from the FT‐IR result, the numbers of multiple hydrogen bonds and cross‐linking covalent bonds (NMHB and NCB), and total cross‐linking bond energy (ETB) were evaluated to be 0, 7.92, and 618 for BMI‐DAIC‐ML411, 0.71, 7.81, and 627 for BMI‐DAIC‐ML311, and 0.95 mol kg?1, 7.61 mol kg?1, and 617 kcal kg?1 for BMI‐DAIC‐ML211, respectively. A higher order of glass transition and 5% weight loss temperatures for BMI‐DAIC‐MLs was 411 > 311 > 211 in accordance with a higher order of NCB. BMI‐DAIC‐MLs displayed a weak tan δ peak at 70–150°C due to dissociation of the hydrogen bonds. The flexural strength and modulus of BMI‐DAIC‐ML311 were higher than those of BMI‐DAIC‐ML411 in accordance with the difference of ETB. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43121.  相似文献   

6.
High performance epoxy resins have attracted much research interest in the last decades. Herein, two novel epoxy monomers containing cycloaliphatic hydrocarbon, 1,4‐bis(4‐(N,N‐diglycidylamino)phenoxy)cyclohexane (CyhEP) and 1,3‐bis(4‐(N,N‐diglycidylamino)phenoxy)adamantane (AdaEP) were synthesized and characterized. They were cured with 4‐methylhexahydrophthalic anhydride (MHHPA) to prepare the highly crosslinked thermosets. Both epoxy resins show good thermal stability (Td5 > 300 °C), high glass transition temperature (> 200 °C), and high storage modulus (> 3.2 GPa) due to their highly crosslinked structure. The AdaEP/MHHPA resin shows a low dielectric constant (3.4 at 1 MHz) because of the introduction of bulky rigid adamantane into the polymer. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43456.  相似文献   

7.
A series of bismaleimide‐triazine resins (EBT) were prepared from 2‐(4′‐maleimido)phenyl‐2‐(4′‐maleimidophenoxyl)phenylbutane (EBA‐BMI) and 2,2‐bis(4‐cyanatophenyl)propane (BADCy). The resins show attractive processability with good solubility in low boiling point solvents and wide processing temperature windows. Introduction of diallylbisphenol A (DBA) can decrease the curing temperature of EBT resins that the curing exothermic peak temperature shifted from 291 to 237 °C as the content of DBA increased from 0 to 20%. The curing condition influenced the thermal properties of the cured EBT resins. The glass transition temperature increased as the curing temperature and curing time increased. The cured EBT resins show high glass transition temperature up to 352 °C, high thermal stability with 5% weight loss temperature over 405 °C, low coefficient of thermal expansion about 45 to 52 ppm/°C, and high storage modulus up to 2.6 GPa at 250 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44519.  相似文献   

8.
A series of bismaleimide resins based on phthalide‐containing monomer have been prepared by the copolymerization reaction of 3,3‐bis[4‐(4‐maleimidophenoxy)phenyl] ‐phthalide (PPBMI), 4, 4'‐dimaleimido diphenylmethane (MBMI) and 2, 2'‐diallyl bisphenol A (DABPA) in different feed ratios. The curing behavior, thermal, mechanical and physical properties and compatibility of all resultant resins were carefully characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), notched Izod impact test, water absorption test and scanning electron microscopy (SEM). DSC investigations showed that with an increase of the weight ratio of PPBMI, the dominating exothermic polymerization temperature (Tp) increased. The glass transitions were observed from DMA thermograms for the cured BMI resins in the temperature range from 277°C to 311°C and decreased with increasing PPBMI content. The TGA results indicated the thermal stability was improved as PPBMI content increased. The investigations of the mechanical properties showed a complicated trend with an increase in PPBMI content. In addition, the equilibrium water uptake of the modified resins was reduced as PPBMI content increased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1084‐1091, 2013  相似文献   

9.
Three bismaleimides (BMIs) each having an ortho-linked aromatic unit were prepared by condensation of maleic anhydride with 1,2-bis(4-aminophenoxy)benzene (1a), 1,2-bis(4-aminophenoxy)-4-tert-butylbenzene (1b), or 2,3-bis(4-aminophenoxy)naphthalene (1c). The molecular structures of these BMIs were confirmed by elemental, IR, and NMR analyses. The thermal behavior of the BMIs was evaluated by differential scanning calorimetry (DSC), and the thermal properties of the thermally cured BMI resins were determined by dynamic thermogravimetric analysis (TGA) and thermomechanical analysis (TMA). The effects of structure of the BMIs on the curing behavior of the BMIs and on the properties of the cured resins were investigated. The BMI of 1a had a relatively high melting point (256 °C) and immediately polymerized after having been melted. The 1b-and 1c-based BMIs with a bulkier molecular structure exhibited lower melting points (136 and 171 °C), facilitating the use of these BMIs in the molten state. The cured BMI resins did not show significant decomposition below 450 °C in air or nitrogen and did not soften below 400 °C.  相似文献   

10.
Three novel bismaleimide (BMI) monomers containing phthalide groups in their structures, i.e. 3,3‐bis[4‐(4‐maleimidophenoxy)phenyl]phthalide, 3,3‐bis[4‐(4‐maleimidophenoxy)‐3‐methylphenyl]phthalide and 3,3‐bis[5‐isopropyl‐4‐(4‐maleimidophenoxy)‐2‐methylphenyl]phthalide, based on phenolphthalein, o‐cresolphthalein and thymolphthalein, respectively, were designed and synthesized. The chemical structures of the monomers were confirmed from 1H NMR and 13C NMR spectroscopy and Fourier transform infrared spectroscopy. These monomers exhibit good solubility in common organic solvents, enabling easy solution processing. The thermal curing behavior of the monomers was investigated using differential scanning calorimetry, displaying broad exothermic peaks and large thermal processing windows. Thermogravimetric analysis and dynamic mechanical analysis were used to characterize the thermal stability and thermal mechanical properties of the resulting BMI resins. The results, in contrast to bisphenol A‐based BMI resin, indicate that the incorporation of the phthalide structure into the polybismaleimide network can effectively improve the thermal properties. Water absorption tests of the cured products demonstrate the chemical structure has an effect on moisture resistance. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Two phosphonate‐containing bismaleimide (BMI) [(4,4′‐bismaleimidophenyl)phosphonate] monomers with different melting temperatures and similar curing temperatures were synthesized by reacting N‐hydroxyphenylmaleimide with two kinds of dichloride‐terminated phosphonic monomers. The BMI monomers synthesized were identified with 1H‐, 13C‐, and 31P‐nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The phosphonate‐containing BMI monomers react with a free‐radical initiator to prepare phosphonate‐containing BMI polymers and also with various aromatic diamines to prepare a series of polyaspartimides as reactive flame retardants. The polymerization degrees of polyaspartimides depend on the alkalinity and nucleophility of diamines as chain extenders. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) were used to study the thermal properties of the phosphonate‐containing BMI resins such as the melting temperature, curing temperature, glass transition temperature (Tg), and thermal resistance. All the phosphonate‐containing BMI resins, except the BMI polymers, have a Tg in the range of 210–256°C and show 5% weight loss temperatures (T5%) of 329–434 and 310–388°C in air and nitrogen atmospheres, respectively. The higher heat resistance of cured BMI resin relative to the BMI polymer is due to its higher crosslinking density. Since the recrosslinking reactions of BMI polymers and polyaspartimides occur more easily in an oxidation environment, their thermal stabilities in air are higher than are those in nitrogen gas. In addition, the thermal decomposition properties of polyaspartimides depend on the structures and compositions of both the diamine segments and the BMI segments. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1919–1933, 2002  相似文献   

12.
Lysine methyl ester (LME), which was generated in situ by the reaction of lysine methyl ester dihydrochloride and triethylamine in dimethyl sulfoxide (DMSO), was prepolymerized with 4,4′‐bismaleimidodiphenylmethane (BMI) at 80°C for 2 h in DMSO. Then, the formed prepolymer was precipitated in water. The obtained LME/BMI prepolymers with molar ratios of 2:2, 2:3, and 2:4 were compression‐molded at a final temperature of 230°C for 2 h to produce cured lysine methyl ester/4,4′‐bismaleimidodiphenylmethane resins (cLBs; cLB22, cLB23, and cLB24, respectively). Fourier transform infrared (FTIR) analyses revealed that the Michael addition reaction of amino groups to the C?C bonds of the maleimide group occurred in addition to the homopolymerization of the maleimide group. The glass‐transition temperature (Tg) and 5% weight loss temperature (T5) of the cured resin increased with increasing BMI feed content, and cLB24 showed the highest Tg (343°C) and T5 (389°C). The flexural strengths (131–150 MPa) and moduli (3.0–3.6 GPa) of the cLBs were comparable to those of the conventionally cured resins of BMI and 4,4′‐diaminodiphenylmethane. Field emission scanning electron microscopy analysis revealed that there was no phase separation for all of the cured resins. Although cLB23 and cLB24 were not biodegradable, cLB22 had a biodegradability of 8.5% after 30 days in an aerobic aqueous medium containing activated sludge. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40379.  相似文献   

13.
The fluorinated epoxy resin, 2,2‐bisphenol hexafluoropropane diglycidyl ether (DGEBHF) was synthesized through a two‐step procedure, and the chemical structure was confirmed by 1H n uclear magnetic resonance (NMR), 13C NMR, and Fourier transform infrared (FTIR) spectra. Moreover, DGEBHF was thermally cured with methyl hexahydrophthalic anhydride (MHHPA). The results clearly indicated that the cured DGEBHF/MHHPA exhibited higher glass transition temperature (Tg 147°C) and thermal decomposition temperature at 5% weight loss (T5 372°C) than those (Tg 131.2°C; T5 362°C) of diglycidyl ether of bisphenol A (DGEBA)/MHHPA. In addition, the incorporation of bis‐trifluoromethyl groups led to enhanced dielectric properties with lower dielectric constant (Dk 2.93) of DGEBHF/MHHPA compared with cured DGEBA resins (Dk 3.25). The cured fluorinated epoxy resin also gave lower water absorption measured in two methods relative to its nonfluorinated counterparts. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2801–2808, 2013  相似文献   

14.
Octa(aminophenyl)silsesquioxane (OAPS) was prepared in two steps by the nitration of octaphenylsilsesquioxane (OPS) in fuming nitric acid to form octa(nitrophenyl)silsesquioxane (ONPS), followed by the mild reduction of ONPS with Pd/C as a catalyst. OPS, ONPS and OAPS were characterized by FTIR, 1H NMR, and 29Si NMR techniques. Modification of a bismaleimide (BMI) resin with OAPS and dipropargyl ether of bisphenol A (DPBPA) was investigated. The modified resins, OAPS/DPBPA/BMI, were characterized with DSC, FTIR and rheology analyses. The results showed that the modified resins have good processability. The DMA results indicated that the glass transition temperature (Tg) of the cured OAPS/DPBPA/BMI hybrid resins reached 350°C. The decomposition temperature (Td5) of the cured resins decreased but the char yield (Yc, 800°C) increased as the OAPS loading increased, especially in air. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
An efficient approach for the preparation of inorganic/organic hybrid thermosets via photoinduced copper-catalyzed azide–alkyne cycloaddition click chemistry is established. Highly cross-linked thermoset polymers have been practically obtained by this technique using multifunctional compounds, tri-alkyne (1,1,1-tris[4-(2-propynyloxy) phenyl]-ethane) with octakis-azido-POSS or tri-azide (3,3′-((2-((3-azido-2-hydroxypropoxy)methyl)-2-ethylpropane-1,3-diyl)bis(oxy))bis(1-azidopropan-2-ol)) in the presence of Cu(II)Br2/N,N,N,N″,N?-pentamethyldiethylenetriamine/2-dimethoxy-2-phenyl acetophenone. The homogeneously distributed POSS nanoparticles are clearly detected in the TEM micrographs; whereas the TGA analysis shows that the obtained hybrid thermosets are thermally stable up to 360 °C and begin to lose weight at higher temperatures with a char yield of 23–50% at 800 °C.  相似文献   

16.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

17.
The thermal crosslinkability of the quinoxaline moiety incorporated within poly(phenylquinoxalines) was demonstrated by differential scanning calorimetry (DSC), torsional braid analysis (TBA), and high-temperature adhesive evaluation. Several homopolymers, random copolymers, and polymer blends were prepared and evaluated. A new bis(1,2-dicarbonyl) monomer, 4-(4-phenylglyoxalylphenoxy)phenylglyoxal hydrate, was prepared and reacted with 3,3′, 4,4′-tetraaminobiphenyl to provide a polymer where a phenyl group was located on alternating quinoxaline rings. The apparent Tg of this polymer was initially 280°C and increased to 360°C after exposure to 400°C for 0.5 hr in air.  相似文献   

18.
Two novel propargylether‐terminated resins containing pyridine and bulky phenyl pendent group were prepared from propargyl bromide and different diphenols, and highly thermal stable polymers were obtained by the thermal cure of the monomers. The chemical structures of these novel monomers were well confirmed by FTIR, 1H‐NMR and elemental analysis. Curing and thermal behavior of the resins were investigated using differential scanning calorimetry (DSC) and dynamic thermogravimetry in argon atmosphere. DSC curves of these two monomers showed a single endothermic peak corresponding to the conformation of chromene ring and homopolymerization of the chromene ring. The temperature at 5% weight loss (Td5) was higher than 440°C under argon and the highest glass transition temperature (Tg) reached 362°C. The rheological behavior and solubility of the monomer were also investigated. The monomers showed excellent flow‐ability, broad processing window, and great solubility. These results showed that the two resins could be ideal candidates for high‐temperature resistant resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40469.  相似文献   

19.
A series of novel high refractive index episulfide‐type optical resins were prepared by ring‐opening copolymerization of bis(β‐epithiopropylthioethyl) sulfide (BEPTES) with episulfide derivative of diglydicyl ether of bisphenol A (ESDGEBA) and 2,4‐tolylene diisocyanate (TDI), respectively, in the presence of triethylamine as a curing catalyst. The episulfide monomers, BEPTES and ESDGEBA, were synthesized from their corresponding epoxy compounds, respectively. The cured transparent resins exhibit high refractive index (nd > 1.63) and relatively low dispersion. The refractive index (nd) and Abbe's number (νd) of the BEPTES/ESDGEBA curing system increased linearly with the weight content of BEPTES monomer in the range from 1.633 and 34.0 for the copolymer with 10 wt % of BEPTES to 1.697 and 38.1 for the homopolymer of pure BEPTES. For the BEPTES/TDI curing system, the refractive index and Abbe's number varied linearly with the molar ratio of BEPTES to TDI from 1.652 and 28.7 to 1.669 and 34.6. High glass‐transition temperatures (Tg > 130°C) of the cured BEPTES/TDI resins were observed, which indicate that the cured BEPTES/TDI resins possess a good heat resistance. The optical, physical, and thermal properties of the episulfide‐type cured optical resins were also discussed in this study. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2426–2430, 2003  相似文献   

20.
Prepolymers prepared by reactions of 1,1′‐(methylenedi‐4,1‐phenylene)bismaleimide (BMI) with myrcene (Myr) and limonene (Lim) in 1,3‐dimethyl‐2‐imidazolidinone (DMI) at 150°C were compressed at 250°C to produce crosslinked Myr/BMI [molar ratio = 2:2–2:5 (MB22–MB25)] and Lim/BMI [molar ratio = 1:1 (LB11)] resins. The 1H‐NMR analysis of the model reaction products of Lim and Myr with N‐phenyl maleimide (PMI) in DMI at 150°C revealed that a Diels–Alder reaction for Myr/PMI and a vinyl copolymerization for Lim/PMI preferentially proceeded in addition to the occurrence of the ene reaction to some extent. The Fourier transform infrared data of the cured resins were consistent with the results of the model reactions. All of the cured resins, except for MB22, showed tan δ peak values and 10% weight loss temperatures that were higher than 330 and 440°C, respectively. The flexural strength and modulus values of the MBs were higher than those of LB11. Field emission scanning electron microscopy analysis revealed that MB22–MB24 were homogeneous, whereas some combined particles appeared in LB11. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号