首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, attention is paid to synthesis and swelling behavior of a superabsorbent hydrogel based carboxymethylcellulose (CMC) and polyacrylonitrile (PAN). The physical mixture of CMC and PAN was hydrolyzed in NaOH solution to yield hydrogel, CMC–poly(NaAA‐co‐AAm). During alkaline hydrolysis, the nitrile groups of PAN were completely converted to a mixture of hydrophilic carboxamide and carboxylate groups followed by in situ crosslinking of the grafted PAN chains. A proposed mechanism for hydrogel formation was suggested and the structure of the product was established using FTIR spectroscopy. The reaction variables affecting the swelling capacity of the hydrogel were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Swelling measurements of the synthesized hydrogels in various chloride salt solutions indicated a swelling‐loss with increase in the ionic strength of the salt solutions. The pH of the various solutions also affected the swelling of the superabsorbent. Furthermore, the present hydrogels showed a pH‐reversible property. Finally, the swelling kinetics of synthesized hydrogels with various absorbent particle sizes was briefly examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
In this paper, synthesis and swelling behavior of a novel superabsorbent hydrogel based on kappa carrageenan (κC) and polyacrylonitrile (PAN) was investigated. To achieve partially hydrolyzed κC‐PAN hydrogel, physical mixture of κC and PAN was hydrolyzed by NaOH solution. During alkaline hydrolysis, the nitrile groups of PAN are converted to a mixture of hydrophilic carboxamide and carboxylate groups follow by in situ crosslinking of the grafted PAN chains. The reaction variables affecting on the swelling capacity of the hydrogel were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Under the optimized conditions concluded, super swelling hydrogel with the ability of water absorption up to 3260 g/g (water/dry hydrogel powder) has been prepared. Swelling measurements of the synthesized hydrogels was carried out in various salt solutions and solutions with different pH. The results indicate that the hydrogels have good pH sensitivity and pH‐reversible property between pH 2 and pH 8. POLYM. ENG. SCI. 46:1778–1786, 2006. © 2006 Society of Plastics Engineers.  相似文献   

3.
Graft copolymerization of acrylic acid (AA) and acrylamide (AAm) onto chitosan (CS) was carried out using gamma irradiation. Their swelling behavior was investigated. The hydrogels before and after alkaline hydrolysis were confirmed by FTIR spectroscopic studies. The hydrogels show ampholytic and reversible pH-responsiveness characteristics. The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. The ability of the prepared copolymer to be used as gastric antibiotic delivery system was estimated using amoxicillin trihydrate as a model drug. Release of amoxicillin trihydrate from these investigated hydrogels was studied. For non-ionized drugs, such as amoxicilin trihydrate, the electrostatic polymer/ polymer interactions take place between the cationic groups from CS and the anionic ones from PAA resulting in entrapping the drug into the mesh space of the hydrogel. The non-ionized amoxicillin release was controlled by the swelling/eroding ratio.  相似文献   

4.
A kind of novel superabsorbent hydrogel with high swelling ratio property that could be used for the development of water absorbing resin, soil water retention agent, and chemical sand‐fixing material was synthesized in this study. The hydrogels were prepared by the crosslinking reaction of polysuccinimide (PSI). The relationships between swelling ratio and volume of solvent as well as the concentration of crosslinking agent were investigated in detail. Several composites, such as starch, carrageenan, and polyacrylamide, were added into hydrogels to enhance the swelling ratio. It was found that the swelling ratio was significantly increased, which the maximum water absorbency was enhanced 2.46 times when the composite polyacrylamide (PAM) was added compared to the control. The effects of ionic strength and sensitivity of pH on hydrogels were also studied. The modified hydrogels products with swelling ratio less sensitivity to the salinity as well as relative high swelling ration in salinity system were also obtained by adding PAM. Through the Fourier transform infrared spectroscopy (FTIR) characterizations, the crosslinking reaction mechanism and the structure of composite were proposed. In addition, the transmission electron microscopy (TEM) examinations showed that some composite materials elevated the physical crosslinked and connected channels density substantially. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 550–557, 2006  相似文献   

5.
A novel hydrolyzed collagen‐based hydrogel has been prepared by grafting the binary mixture of acrylamide and 2‐acrylamido‐2‐methylpropanesulfonic acid onto the collagen backbone in the presence of a crosslinking agent. Its physicochemical properties in aqueous solution were studied. The effect of reaction variables on both gel content and swelling capacity was investigated to achieve a hydrogel with improved absorbency and gel content. The absorbency under load of optimized hydrogel was also investigated by using an absorbency under load tester at various applied pressures. The swelling ratio in various salt solutions was also determined and additionally, the swelling of hydrogels was measured in solutions with pH ranged 1–13. The synthesized hydrogel exhibited a pH‐responsiveness character so that a swelling‐collapsing pulsatile behavior was recorded at pH 2 and 8. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
In this study, we attempt to synthesize novel acrylated agarose (ACAG)‐based hydrogels with three different crosslinking densities. Acrylate groups were inserted onto agarose (AG) backbone through homogeneous reaction of acrylic monomers with AG backbone. Hydrogels were synthesized through radical copolymerization of a mixture of acrylic acid and 2‐hydroxyethyl acrylate with ACAG in aqueous solution using ammonium persulfate as an initiator. Infrared spectroscopy (FTIR) was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was assessed by scanning electron microscopy. The equilibrium swelling capacities of synthesized hydrogels were evaluated in various conditions. The absorbency under load and dynamic swelling kinetics of the hydrogels were also studied. Finally, the hydrogels were loaded with potassium nitrate and their potential for controlled release of this salt was investigated by conductimetry. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

7.
Poly(N‐isopropylacrylamide) (PNIPA)/silica composite hydrogels were prepared and the effects of the silica incorporation on the swelling and breaking characteristics of the hydrogels were investigated. To improve the dispersive property of silica in the PNIPA matrix via the formation of covalent bonds between the polymer and silica, vinyl groups were introduced in the silica by reacting it with a coupling agent, 3‐methacryloxypropyltrimethoxysilane. When unmodified silica was used as filler in the PNIPA‐composite hydrogel, the swelling ratio of the composite hydrogel below the critical gel transition temperature (CGTT) increased with increasing silica content. However, when the modified silica was used as the filler, the swelling ratio below CGTT decreased with increasing silica content because of the enhanced distribution and additional crosslinking. Above CGTT, the swelling ratios of the PNIPA/silica hydrogels were similar regardless of the silica modification. The gel breaking stress of the hydrogels increased with increasing silica content, and this enhancement was larger for the modified silica hydrogel. Scanning electron microscopy images showed that the modified silica particles were distributed more evenly in the PNIPA matrix than the unmodified ones were and that the size of cell‐like structure of the hydrogel decreased with increasing modified silica content. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
A novel physicochemical crosslinked nanocomposite hydrogel based on polyvinyl alcohol (PVA) and natural Na‐montmorillonite (Na+‐MMT) was synthesized by chemical crosslinking of nanocomposite hydrogel followed by a freezing‐thawing process. The effects of physical crosslinking, as well as physicochemical crosslinking, on the structure, morphology, and properties (thermal, mechanical, swelling, and deswelling) of nanocomposite hydrogels were investigated and compared with each other. The structure and morphology of nanocomposites were studied by Fourier transform infrared, X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy techniques. The thermal and mechanical properties of nanocomposites that were affected by physical and physicochemical crosslinking were evaluated by thermogravimetric analysis, differential scanning calorimeter, dynamic mechanical analysis, hardness test, and Water vapor transmission rate (WVTR) experiments. The results showed that the physicochemical crosslinking of a PVA nanocomposite leads to a reduction in crystallinity and melting temperature, as well as an increase in the Hardness and WVTR compared to a physically crosslinked PVA nanocomposite hydrogel. The swelling and deswelling experiments were performed using a gravimetric method, and it was shown that controlled crosslinking of PVA nanocomposite hydrogel with glutaraldehyde causes the swelling ratio to increase and the cumulative amount of water loss to decrease. The swelling (sorption) and deswelling (desorption) kinetics data for physically and physicochemical crosslinking of nanocomposite hydrogels were fitted with a fickian model. It is concluded that through control crosslinking of PVA nanocomposite can lead to a hydrogel with higher swelling capacity than that is in conventional PVA nanocomposite hydrogel. POLYM. COMPOS., 37:897–906, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
A series of biopolymer‐based superabsorbent hydrogels based on carboxymethyl cellulose has been prepared by free‐radical graft copolymerization of acrylamide and 2‐acrylamido‐2‐methylpropan sulfonic acid (AMPS) in aqueous solution using methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator. The effect of variables on the swelling capacity such as: acrylamide/AMPS weight ratio, reaction temperature, and concentration of the initiator and crosslinker were systematically optimized. The results indicated that with increasing the amount of AMPS, the swelling capacity is increased. FT‐IR spectroscopy and scanning electron microscope analysis were used to confirm the hydrogel structure. Swelling measurements of the synthesized hydrogels in different salt solutions indicated considerable swelling capacity. The absorbency under load of the superabsorbent hydrogels was determined by using an absorbency under load tester at various applied pressures. A preliminary swelling and deswelling behaviors of the hydrogels were also studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Hydrogel hybrids were conveniently prepared from alkaline hydrolysis of chitosan–poly(acrylonitrile) mixture under highly practical conditions. The reaction of chitosan alkoxide anions with nitrile groups of poly(acrylonitrile) (PAN) forms crosslinking points and results in a three‐dimensional network with superswelling ability in aqueous media. The hydrogel hybrid was identified using FTIR spectroscopy. The PAN content of the hydrolyzing feed affects proportionally the swelling capacity of the hydrogel hybrid. The swelling properties (capacity and rate) of the ampholytic hydrogel were investigated preliminarily. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1615–1619, 2006  相似文献   

11.
A novel hydrogel was prepared from industrial waste to form a green polymer with a higher swelling capacity. This hydrogel was synthesized by two methods for chemical crosslinking, namely crosslinking by radical polymerization and crosslinking by addition reaction. In crosslinking by radical polymerization, graft copolymerization of poly(vinyl alcohol) (PVA) and polyacrylamide (PAAm) was carried out using ceric ammonium sulfate in presence of N,N',‐methylenebisacrylamide, and then mixed with the black liquor resulting from alkaline pulping of rice straw. While, in crosslinking by addition reaction, the same above reagents were mixed with the black liquor in absence of the initiator. The black liquor is an industrial waste resulting from the pulping method and consists of dissolved lignin and carbohydrates. The black liquor causes environmental water pollution due to its dumping into the sea. The formed hydrogels were characterized using FT‐IR spectroscopy and scanning electron microscopy (SEM). It was noted that the hydrogel prepared by radical polymerization showed high swelling capacity, 60.00%, compared to that prepared by the addition reaction, 27.27%. The hydrogels formed were used also to study the influence of sodium chloride on the absorption capacity at room temperature and swelling ratios at different temperatures and pHs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
This article describes the synthesis and swelling behavior of a superabsorbing hydrogel based on sodium alginate (NaAlg) and polyacrylonitrile (PAN). The physical mixture of NaAlg and PAN was hydrolyzed with a solution of NaOH to yield an alginate–poly(sodium acrylate‐co‐acrylamide) [Alg–poly(NaAA‐co‐AAm)] superabsorbent hydrogel. A proposed mechanism for hydrogel formation was suggested, and the structure of the product was established with Fourier transform infrared spectroscopy. The effects of reaction variables were systematically optimized to achieve a hydrogel with a swelling capacity as high as possible. Under the optimized conditions concluded, the maximum capacity of swelling in distilled water was 610 g/g. The absorbency of the synthesized hydrogels was also measured in various salt solutions. The swelling ratios decreased with an increase in the ionic strength of the salt solutions. In addition, the swelling capacity was determined in solutions with pHs ranging from 1 to 13. The Alg–poly(NaAA‐co‐AAm) hydrogel exhibited pH responsiveness, so a swelling–deswelling pulsatile behavior was recorded at pHs 2 and 8. This on–off switching behavior made the hydrogel as a good candidate for the controlled delivery of bioactive agents. Finally, the swelling kinetics of the hydrogels with various particle sizes were preliminarily investigated as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2927–2937, 2006  相似文献   

13.
A novel full‐polysaccharide hydrogel was prepared by crosslinking of chitosan with periodate‐oxidized sucrose. A tetraaldehyde molecule is synthesized via periodate oxidation of sucrose and then applied as a crosslinking agent to form a new hydrogel network. A mechanism for the superabsorbent hydrogel formation via reductive N‐alkylation was also suggested. The structure of the hydrogel was confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). It is shown that crosslinking of chitosan can improve its thermal stability. The effects of crosslinker concentration, pH, and inorganic salt on the swelling behavior of the hydrogel were studied. The results indicate that the hydrogel has good pH sensitivity and pH reversible response. The smart hydrogels may have potential applications in the controlled delivery of bioactive agents and for wound‐dressing application © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
In the present work crosslinked methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels were prepared by free radical copolymerization of methyl methacrylate (MMA) with itaconic acid (IA) using ethylene glycol dimethacrylate (EGDMA) and N, N methylene bisacrylamide (MBAAm) as crosslinkers and benzoyl peroxide as initiator. Prepared hydrogels were investigated for dynamic and equilibrium swelling studies. For swelling behaviour, effect of pH, monomeric compositions, degree of crosslinking and type of crosslinking agent were investigated. Swelling studies were performed in the USP phosphate buffer solutions of varying pH 1.2, 4.5, 5.5, 6.5 and 7.0. Results showed that swelling increased by increasing IA content in hydrogels structure. This may be due to the presence of more carboxylic groups available for ionization. Swelling was decreased with increase in crosslinking ratio owing to tighter hydrogel structure. Hydrogels were characterized by Fourier transform infrared (FTIR), and scanning electron microscope (SEM). Polymer-solvent interaction parameters (χ) of hydrogels were determined by using Flory–Rehner theory of equilibrium swelling values. The analysis of diffusion mechanism from gels using Peppas model showed that all monomeric compositions and degrees of crosslinking followed Fickian diffusion.  相似文献   

15.
A series of novel silane crosslinked hydrogel was prepared from kappa carrageenan (KC), acrylic acid (AA) using vinyltriethoxysilane (VTESi). Potassium persulphate initiated the grafting and copolymerization reactions between reactants. In addition, the condensation of the hydroxyl groups of KC and VTESi resulted into crosslinking. Novelty of this work is the use of VTESi as crosslinker for such a composition of hydrogel. The structure of prepared hydrogels was characterized by Fourier transform infrared spectroscopy. The analysis of spectra confirmed the presence of feed components in the prepared hydrogels. Thermogravimetric analysis showed an increase in the stability of the hydrogels either having high AA contents or crosslinker amount. The effect of feed components, pH (buffer, non-buffer), electrolytic media and temperature on the swelling behaviour of the hydrogels is reported here.Most promising results with high swelling ratio were observed in hydrogel having low monomeric ratio (KC:AA = 1:7). pH response of this hydrogel in acidic and neutral pH makes it suitable for drug delivery application. Insulin, a protein based drug was selected as a model drug. It requires its delivery in small intestine for proper action; therefore its release behaviour was studied in-vitro in simulated stomach and intestinal fluids. The release profile of insulin showed negligible release in simulated gastric fluid (SGF) and sustained release in simulated intestinal fluid (SIF). The obtained results are in good agreement with the swelling response of this hydrogel. The weak structure of this hydrogel makes it preferable for drug delivery, as it is able to get crumbled after releasing the drug for 6 h at neutral pH.  相似文献   

16.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

17.
Novel pH‐sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were prepared in two steps. Chitosan was first ionically crosslinked with itaconic acid, after which a free radical polymerization and crosslinking of the chitosan/itaconic acid network was performed by adding methacrylic acid and a crosslinker in order to achieve better mechanical properties and tunable swelling. The samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, dynamic mechanical analysis and the swelling ratios of the hydrogels at various pH values (2.0–8.0). The hydrogel composition is found to have a great impact on the hydrogel structure, mechanical and thermal properties, morphology and swelling kinetics. The highly porous morphology of the gels is probably connected with the bulky chitosan/itaconic acid network which reduces the degree of crosslinking in the second step of the synthesis due to steric hindrances. The gels demonstrate substantial change in buffer absorbency with change of pH, low for acid buffers and the higher for pH values above 6 where the swelling is considerably slow, thus suggesting their strong candidature for use as oral drug‐delivery systems in the lower parts of the gastrointestinal tract and for drugs that require longer release times. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
A semi‐interpenetrating polymer network (semi‐IPN) hydrogel based on kappa‐carrageenan (κC) and poly (vinylsulfonic acid, sodium salt) (PVSA) was prepared by graft copolymerization of acrylamide (AAm) using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. FTIR spectroscopy was used for confirming the structure of the final product. It was found that the chemical composition of the Semi‐IPN hydrogel is equal to the initial homopolymers and monomer feed compositions. The swelling capacity of the hydrogel was shown to be affected by the MBA, APS, and AAm concentration as well as κC/PVSA weight ratio. The swelling behavior of the hydrogel was also investigated in various pHs and salt solutions. Since the highly swelling biopolymer‐based hydrogel exhibits low salt‐sensitivity, it may be referred to as an anti‐salt superabsorbent hydrogel. The swelling kinetics of the superabsorbent hydrogels was studied as well. POLYM. ENG. SCI., 47:1388–1395, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
Poly(vinyl alcohol) (PVA) was modified with phthalic and succinic anhydrides to give vinyl alcohol–vinyl ester copolymers that contain carboxylate groups. These half‐esters were then crosslinked by using the poly‐ (ethylene glycol) (PEG) 400 diglycidylether. Low crosslinker/carboxylate ratios were used to obtain low degrees of crosslinking, so the capacity of the resulting hydrogel to absorb water was high. Water absorption was determined gravimetrically as a function of time at room temperature. The equilibrium swelling ratio and compressive modulus were characterized for all the resulting PVA hydrogels and related to the network structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3026–3031, 2003  相似文献   

20.
Novel electro‐responsive nanocomposite hydrogels were prepared by the radical graft polymerization reaction of partially neutralized acrylic acid on poly(vinyl alcohol) and organically modified MMT nanoclay (OMMT) using glutaraldehyde as a crosslinker and potassium initiator. The structures of the hydrogels were confirmed by using Fourier transform infrared, X‐ray diffraction, and scanning electron microscopy study. The nanocomposite hydrogels were characterized by evaluating such molecular weight between crosslinks, (Mc) crosslinking density (ρ), and mesh size (ξ). The effects of various parameters on the swelling behavior of the hydrogels were studied. The thermogravimetric analysis indicated that introduction of clay resulted in an increase in thermal stability. Finally, the electric stimuli responsive measurement indicates the bending of hydrogel toward the cathode in an aqueous solution of NaCl. POLYM. COMPOS., 36:34–41, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号