首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The preseries production of the LHC main superconducting dipoles is presently being tested at CERN. The foremost features of these magnets are: twin structure, six block two layer coils wound from 15.1 mm wide graded NbTi cables, 56 mm aperture, polyimide insulation and stainless steel collars. The paper reviews the main test results of magnets tested to day in both normal and superfluid helium. The results of training performance, magnet protection, electrical integrity and the field quality are presented in terms of the specifications and expected performance of these magnets in the future accelerator.  相似文献   

3.
In this paper, we review the tools used for controlling the production of the LHC main dipoles through warm magnetic measurements. For the collared coil measurements, control limits are based on the statistics relative to the pre-series production. For the cold mass, the difference between collared coil and cold mass is considered, allowing a very stringent test. In both cases, measurements are split in straight part average, variations and coil ends contributions. Two different alarm levels exist in case the measured field is out of limits. The analysis can be carried out at the manufacturer and allows detection of anomalies in the measured magnetic field. These can be either due to wrong measurements or caused by assembly defects. Techniques used to work out information on the magnet assembly from the field harmonics are outlined. We summarize the experience gathered on about 180 collared coils and 120 cold masses, pointing out the bad cases and investigating the reliability of the measurements.  相似文献   

4.
We evaluate the influence of mechanical tolerances in the field quality in the LHC dipoles. We show that the most relevant effect is due to tolerances on the coil and on the internal part of the collars. The sensitivities of the field error multipoles on the mechanical tolerances are worked out using a finite element model of the dipole cross section. A Monte Carlo method is used to simulate the overall effect of both collar and coil tolerances on field quality. Correlation between random multipoles is worked out, and a comparison with the target table of the LHC field errors is given  相似文献   

5.
This paper describes two methods used to study the effect of the tolerances of the components on the structure of the LHC main dipole. The first method, called semi-statistical, is useful for the determination of the acceptable variance of the dimensions of magnet components. The second one, fully statistical, allows the study of the combined effect of many parameters. The use of these two methods allowed to evaluate with good confidence the robustness of two different dipole cross-section designs, featuring austenitic and aluminium alloy collars, respectively  相似文献   

6.
The LHC contains a number of large aperture quadrupoles (MQY) in the insertions. The acceptance of these magnets was based on warm magnetic measurements performed before delivery to CERN. During the series production of the MQY quadrupoles, the permeability of the collars drifted from the nominal value, and effects on the transfer function and multipole components became evident. To study the effects on the magnetic field, variable permeability of the stainless-steel collars as a function of local field and temperature was introduced into a numerical model. Comparing the results with measured data, we could isolate the contribution of permeability deviation on the magnetic field quality. The extrapolation of transfer function and field multipoles to operating temperature and current gives the necessary offsets, which are compared with measurements on a reduced set of magnets.  相似文献   

7.
Within the LHC project, a series production of superconducting dipoles and quadrupoles has recently been completed in industry and all magnets were cold tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, two layer coils wound from 15.1 mm wide Nb-Ti cables, and all-polyimide insulation. This paper reviews the process of the power test quality assurance and performance evaluation, which was applied during the LHC magnet series tests. The main test results of magnets tested in both supercritical and superfluid helium, including the quench training, the conductor performance, the magnet protection efficiency and the electrical integrity are presented and discussed in terms of the design parameters and the requirements of the LHC machine.  相似文献   

8.
More than 10% of the collared coils of the main LHC dipoles have been produced. In this paper, we compare the measured field quality to beam dynamics targets using correlations to measurements at 1.9 K. The present status of field quality is given and corrective actions carried out to center field quality on optimal values are presented. Differences among the three manufacturers are analyzed, and the main results that concern correlation between cold and warm measurements are outlined. Present trends in the production and open points are discussed.  相似文献   

9.
The field strength and homogeneity of all the LHC superconducting magnets were measured as a part of the production control and qualification process that has taken place during the past four years. In addition to field measurements at room temperature performed on the integral of the production, a significant part of the magnets has been subjected to extensive magnetic measurements at cold. The measurements at cryogenic temperatures, generally performed up to excitation currents of 12 kA corresponding to the ultimate LHC energy of 7.6 TeV, were mainly based on static and dynamic field integral and harmonic measurements. This allowed us to study in detail the DC effects from persistent current magnetization and long-term decay during constant current excitation. These effects are all expected to be of relevance for the field setting and error compensation in the LHC. This paper reports the main results obtained during these tests executed at operating conditions. The integrated field quality is discussed in terms of distribution (average and spread) of the field strength and low-order harmonics as obtained for all the main ring magnet families (dipoles, main and matching quadrupoles). The dependence of field quality on coil geometry, magnet and cable manufacturer is analyzed. A projection of the field quality expected for the critical components in the machine is presented.  相似文献   

10.
A new design concept of the axisymmetric magnet system generating the very high pulsed magnetic field which is superimposed on the bias magnetic field of the superconducting magnet is presented. The pulsed magnet consists of two coaxial coils which are wound in opposite directions. The geometry of both pulsed coils, i.e. the working (inner) one and the compensating (outer) one is designed in such a way that the mutual coupling between the small pulsed magnet and the outer superconducting magnet is practically zero. This configuration prevents the rise of the high induced voltage on the current leads of the superconducting magnet when the pulsed magnet is being energised, hence resulting naturally in protection of the system (superconducting magnet and the current source) against possible damage. Further, it is predicted that the stray field of the pulsed magnet, which gives rise e.g. to the eddy currents in the winding of the superconducting magnet, is considerably decreased. The simple theory enabling the design of the geometry of the compensating pulsed coil is derived. The advantages of this new concept are demonstrated on the results of the theoretical analysis using, as an example, one of the pulsed coils that were designed and fabricated in the Clarendon Laboratory, in connection with the Oxford Instrument superconducting magnet (Clarendon hybrid outer) which can generate a steady magnetic field up to 10 T in a room temperature working space with a diameter of 240 mm.  相似文献   

11.
The LHC will incorporate about 7600 superconducting single aperture corrector magnets mounted in the main magnet cold masses. In order to follow up their production, we have designed and built 12 different benches for warm magnetic measurements based on rotating coils. Each bench was manufactured in two copies, one installed at the industry sites and the other kept at CERN for cross checks and monitoring of the measurement quality. These systems measure the main field, the field quality and the position and orientation of the field relative to the mechanical construction, all properties that are required for an effective use of the magnets. After calibration, the benches automatically refer the measured quantities to the mechanical interfaces used to align the correctors in the cold masses (pin holes or keys). In this paper we evaluate the global uncertainty achieved with the benches and compare the field measurements performed at room temperature in industry with measurements at 1.9 K performed at CERN on samples of each corrector type.  相似文献   

12.
A quench, the transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in the accelerator magnets if one of the three parameters: temperature, magnetic field or current density exceeds a critical value. Energy deposited in the superconductor by the particle beams provokes quenches detrimental for the accelerator operation. In particular if particles impacting on the vacuum chamber and their secondary showers depose energy in the magnet coils. The large hadron collider (LHC) nominal beam intensity is 3.2 ldr 1014 protons. A quench occurs if a fraction of the order of 107 protons per second is lost locally. A network model is used to simulate the thermodynamic behavior of the magnets. The heat flow in the network model was validated with measurements performed in the CERN magnet test facility. A steady state heat flow was introduced in the coil by using the quench heaters implemented in the LHC magnets. The value of the heat source current is determined by the network model and the magnet coil current which is required to quench the coil is predicted accordantly. The measured and predicted value comparison is regarded as a sensitive test of the method.  相似文献   

13.
With the aim of selecting the most suitable design for the series production of the LHC main dipoles, several possible configurations were analysed with respect to admissible component tolerances and structural stability, field level, field quality, number and weight of parts. Two alternatives designs, featuring common collars made out of aluminium alloy and austenitic steel, respectively, were finally compared in detail, Although both designs are almost equivalent at nominal conditions, the austenitic steel collar structure turned out to be far less sensitive to components dimensional variations. This paper reports the main results of the above evaluations, which lead to the choice of austenitic steel collars for the LHC main dipoles  相似文献   

14.
A globally optimum minimum stored energy optimization strategy is implemented to design actively shielded superconducting magnet configurations used in high-field applications. The current density map is first obtained and used as a foundation for the magnet configurations by placing coils at current density local extremities. Optimized current density maps based on the stored energy formulation along with final magnet arrangements are provided to illustrate the findings. In this work, the focus was on compact superconducting magnets as measured by physical size and system footprint for given magnetic field properties inside the imaging region. The process of obtaining the current density maps proposed here over the given magnet domain, where superconducting coils are laid out, suggests that peak current densities occur around the perimeter of the domain, where in the most compact designs, with the domain length less than 1 m, the current direction alternates amongst adjacent coils. To reduce the peak magnetic field to acceptable levels on the superconductors in high-field designs, the size of the magnet domain is made larger, to the extent that the current densities no longer alternate between coils.   相似文献   

15.
This paper describes the superconducting magnet system of the CMD-2 detector. The magnetic field is provided by the main and two compensating superconducting solenoids. The unique features of this system are the solenoids protection method utilizing a distributed resistance along the coil and the power supply being a fluxpump type. The main solenoid produces a field up to 1.2 T in a volume of φ 0.71 m×0.9 m. Its radiation thickness and E/M ratio are 0.38 X0 and 5 kJ/kg, respectively. NbTi/Cu superconducting cables without any insulation and an aluminum stabilizer were used for the design of solenoid coils. The superconducting cable was wound in a stainless-steel bobbin and soldered by a PbSn alloy. The cooling bath provides a temperature of 4.2 K in the system. The superconducting magnet system of the CMD-2 detector was manufactured and tested in 1989  相似文献   

16.
For reasons of geometrical acceptance, 70 mm bore twin aperture quadrupoles are required in the LHC insertions. For an operating gradient of 160 T/m at 4.5 K, a design based on a four layer coil wound from two graded 8.2 mm NbTi conductors has been developed. Three 1 m single aperture quadrupoles of this design have been built and successfully tested. Thereafter, the magnets have been disassembled and the coils re-collared using self-supporting collars. In this paper, we describe the design features of the twin aperture quadrupole, and report on the initial collaring tests and procedures for collaring and final assembly of the 1 m magnet  相似文献   

17.
A full-length, twin aperture prototype (MBP2N1) dipole magnet for the LHC project was assembled at CERN with collared coils delivered by industry. The design of this prototype is close to that foreseen for the dipole series manufacture as far the coil geometry and that of the yoke components are concerned. The bolts that transfer the axial magnetic forces from the coil ends to the cold mass end plates were instrumented to verify the axial coil support. These axial forces were initially measured after partial assembly, during a standard and an accelerated cool down introduction to 1.9 K, and during magnet excitation up to 9.2 T. High force levels were observed, triggering a comparison with analytical models and measurements routinely made on 1-m single aperture dipole models. The prototype magnet was re-assembled with lower initial axial force settings and with additional instrumentation, to monitor these forces during the entire assembly process, and re-tested, to possibly correlate axial forces with training behaviour. This paper reports about the experimental observation and provides models towards their understanding  相似文献   

18.
Fermilab, in collaboration With LBNL and BNL, is in the process of developing a focusing quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70 mm coil bore, and operates in superfluid helium at 1.9 K. The design is based on a two layer cos (20) coil, mechanically supported by standalone steel collars. The collared coil assembly is surrounded by a iron yoke for flux return, and the assembly enclosed by a stainless steel shell. The development program has addressed mechanical, magnetic, quench protection, and thermal issues, through a series of model magnets constructed at Fermilab. This paper summarizes results from the recent model tests, and the status of the program  相似文献   

19.
As part of the US LHC program to provide high gradient superconducting quadrupoles for the LHC interaction regions, a 5.5 meter long prototype magnet has been built and tested horizontally in a production type cryostat at Fermilab. This prototype magnet was used to validate the mechanical and magnetic design, production fabrication and assembly tooling. The first prototype magnet has met the LHC requirements of operating at 215 T/m with excellent magnetic field harmonics. This paper summarizes the test results of this magnet, including quench tests and mechanical behavior over several thermal cycles.  相似文献   

20.
We have measured the magnetic field at room temperature and at 1.8 K on more than twenty, 1-m long, single aperture LHC superconducting dipole models. The magnets feature either a 5-block coil geometry or the baseline 6-block geometry foreseen for the LHC. Comparison of warm and cold measurements show that the coil geometry is essentially unchanged during cooldown. We have therefore used mechanical measurements taken on the coil and collars during assembly to estimate the azimuthal coil length. Based on these measurements we show here that the sensitivity of allowed harmonics on coil size is in good agreement with the prediction obtained from the numerical model used for designing the LHC magnets  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号