首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to quantitatively characterize the pore-scale morphology of organic immiscible liquid residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid blob morphology. Three porous media, comprising a range of particle-size distributions, were used to evaluate the impact of porous-medium texture on blob morphology. The sizes and shapes of the organic-liquid blobs varied greatly, ranging from small spherical singlets (> or = 0.03 mm in diameter) to large, amorphous ganglia with mean lengths of 4-5 mm. The smaller blobs were composed primarily of singlets, which comprised approximately half of all blobs for all three media. Conversely, large, complex blobs comprising four or more bodies composed 11-24% of the total number of blobs. However, the majority of the total organic-liquid surface area and volume was associated with the largest blobs. The ratio of median blob size to median grain size was close to unity for all three systems. The distribution of blob sizes was greatest for the porous medium with the broadest particle-size and pore-size distributions. These results illustrate the utility of synchrotron X-ray microtomography for characterizing fluid distributions at the pore scale in natural porous media.  相似文献   

2.
The objective of this study was to characterize the pore-scale dissolution of organic immiscible-liquid blobs residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of the aqueous, organic-liquid, and solid phases residing in columns packed with one of two porous media. Images of the packed columns were obtained after a stable, discontinuous distribution (e.g., residual saturation) of the organic liquid (trichloroethene) had been established, and three subsequent times during column flushing. These data were used to characterize the morphology of the organic-liquid blobs as a function of dissolution, and to quantify changes in total organic-liquid volume, surface area, and water-organic liquid interfacial area. The dissolution dynamics of individual blobs appeared to be influenced by the local pore configuration. In addition to dissolution-induced shrinkage, some blobs were observed to separate into multiple distinct subunits. The median blob size decreased by approximately a factor of 2 at the point where approximately 90% of the initial organic-liquid volume had been removed. The ratio of capillary associated interfacial area to total water-organic liquid interfacial area increased by 50% at the point where approximately 95% of the initial mass had been removed. A nearly linear relationship was observed between both total and capillary associated interfacial area and organic liquid volumetric fraction. Changes in the measured aqueous-phase trichloroethene effluent concentrations were well correlated with changes in the volume, surface area, and number of blobs. The effluent concentration data were adequately described by a first-order mass transfer expression employing a constant value of the mass-transfer coefficient, with values for the water-organic liquid interfacial area obtained independently from the microtomography data.  相似文献   

3.
Imaging food freezing using X-ray microtomography   总被引:1,自引:0,他引:1  
X‐ray micro‐computed tomography (X‐ray micro‐CT) has been applied to visualise ice crystal structures formed during freezing of a number of foods. Materials were frozen unidirectionally at ?5 °C and then freeze‐dried to remove the ice crystal structure and leave voids that can be measured by the X‐ray. The system reconstructs the 3‐D image based on a set of 2‐D images, and is capable of micrometre‐scale visualisation. This study demonstrates the capability of the technique to characterise the internal ice crystal microstructure of a range of frozen materials; meat, fish, chicken, potato, cheese and carrot. Results show the voids corresponding to the ice crystals formed within these materials at different directions to the heat flux and various axial positions. Electron microscopy of the same materials, both fresh and frozen at ?5 °C, indicates the same shape of voids seen by the tomographic technique. Ice crystal parameters such as size, area and width can be quantified by the technique. Ice crystals in carrot were larger than in the other materials, while cheese and potato had the lowest values. The ice crystal distribution of all the experimental materials varied with axial distance from cooling surface; the closer the measurement was to the cooling surface, the smaller the crystal size. The results demonstrate that X‐ray micro‐CT might be useful in the analysis of frozen foods.  相似文献   

4.
In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. PRACTICAL APPLICATION: X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of foods can be used to identify the important processing parameters that affect the quality of a product.  相似文献   

5.
Synchrotron radiation microtomography was used as a nondestructive imaging technique to investigate the microstructural properties of green and roasted coffee beans. After image acquisition, 2D images have been reconstructed and 3D images of the beans have been then obtained. Qualitative and quantitative analysis of the images allow to fully characterize the morphological and structural features of the coffee beans. Roasting causes meaningful changes in the microstructure of the coffee bean tissue with the development in the entire bean of a porous structure with pores of different shape and size depending on the zone of the bean and cracks occurring mainly in the more external regions and between parenchyma and mucilage. The highly contrasted X-ray images have been analyzed to determine the pore size and its distribution in different regions of the coffee beans by selecting Volume-of-Interest (VoI). The use of phase-contrast hard X-rays imaging techniques represents an interesting tool of investigation of the internal structure, morphology, as well as the quality of whole coffee beans. Moreover, the high potentiality of 3D X-ray imaging and the approach used in this study could be applied in understanding the effects of roasting process conditions on the evolution of microstructural properties of the bean that may affect the stability as well the grinding and brewing performances. PRACTICAL APPLICATION: Synchrotron radiation microtomography is an elegant nondestructive imaging technique to investigate the microstructural properties of porous cellular matrices like the green and roasted coffee beans. The quantitative analysis of the resulting 2D and 3D images allows a more comprehensive and objective characterization of the sample under investigation as a whole or of extracted Volumes-of-Interest in the bean. This imaging technique could have a major role in understanding the effects of roasting process conditions on the microstructural properties of the bean.  相似文献   

6.
Determination of the bubble size distribution at the end of mixing and controlling its changes are the basis for improving bread quality before it is fully manufactured. X-rays from a synchrotron source (Biomedical Imaging and Therapy beamline, Canadian Light Source) were used to rapidly characterize the bubble size distribution and its evolution in non-yeasted dough subsamples as a function of time for 3 h following mixing. A complete X-ray microtomography scan was completed within 120 s. The higher number density of bubbles in dough compared to results previously reported in the literature was attributed to the better contrast and higher resolution (smaller pixel size, 8.75 μm) of the reconstructed X-ray images generated from synchrotron X-rays. The bubble size distribution was very well characterized with a lognormal distribution function. This distribution had a median bubble radius of 22.1 ± 0.7 μm at 36 min after the end of mixing which increased to 27.3 ± 0.7 μm over 162 min, a trend indicative of transport of gas in the dough due to disproportionation. This is the first time disproportionation in non-yeasted wheat flour doughs has been monitored directly under bulk conditions relevant to dough in bakery conditions. These results show that the diffusion-driven dynamics of bubbles in non-yeasted bread doughs can be followed by X-rays from a synchrotron source via feature extraction using image analysis software.  相似文献   

7.
In this work, the X-ray microtomography (μCT) technique was used for the analysis of fat microstructure and quantification of fat in four types of mayonnaise. The dynamic-mechanical properties of the mayonnaise samples were also studied using a controlled-strain rotational rheometer. Four types of commercially produced mayonnaises, chosen to exhibit variability in terms of visible structure of fat, were used for this experiment: ‘kraft’, ‘calvé’, ‘kraft legeresse’ and ‘calvé-mayò’. Appropriate quantitative three-dimensional parameters describing the fat structure were calculated. With regards to the microstructural and rheological relationship, results from the correlation carried out show that a correlation exists among some microstructural and rheological parameters of the mayonnaise samples. The results from this study also show that μCT is a suitable technique for the microstructural analysis of fat as it does not only provide an accurate percentage volume of the fat present but can also determine its spatial distribution.  相似文献   

8.
《Journal of dairy science》2022,105(12):9387-9403
This study explored the use of X-ray computerized microtomography (micro-CT) and confocal Raman microscopy to provide complementary information to well-established techniques, such as confocal laser scanning microscopy (CLSM), for the microstructural characterization of cheese. To evaluate the potential of these techniques, 5 commercial Cheddar cheese samples, 3 with different ripening times and 2 with different fat contents, were analyzed. Confocal laser scanning microscopy was particularly useful to describe differences in fat and protein distribution, especially between the 2 samples with different fat contents. The quantitative data obtained through image analysis correlated well with the nutritional information provided in the product labels. Conversely, micro-CT was more advantageous for studying the size and spatial distribution of microcrystals present within the cheese matrix. Two types of microcrystals were identified that differed in size, shape, and X-ray attenuation. The smallest, with a diameter of approximately 10 to 20 μm, were more abundant in the samples and presented a more uniform roundish shape and higher X-ray attenuation. Larger and more heterogeneous crystals with diameters reaching 50 μm were also observed in scarcer numbers and showed lower X-ray attenuation. Confocal Raman microscopy was useful not only for identifying the distribution of all these components but also allowed comparing the presence of micronutrients such as carotenoids in the cheeses and provided compositional information on the crystals detected. Small and large crystals were identified as calcium phosphate and calcium lactate, respectively. Overall, using micro-CT, confocal Raman microscopy, and CLSM in combination generated novel and complementary information for the microstructural and nutritional characterization of Cheddar cheese. These techniques can be used to provide valuable knowledge when studying the effect of milk composition, processing, and maturation on the cheese quality attributes.  相似文献   

9.
The prevalence of colloid deposition at grain-to-grain contacts in two porous media (spherical glass beads and angular quartz sand, 710-850 microm) was examined using X-ray microtomography (XMT) under conditions where the colloid-grain surface interaction was solely attractive (lacking an energy barrier to deposition), and under fluid velocity conditions representative of engineered filtration systems. XMT allows pore-scale observation of colloid deposition over assemblage-scale porous media domains. Colloids visible in reconstructed images were prepared by coating gold on hollow ceramic microspheres (36 microm in size) (to render densities only slightly higher than water). A significant fraction of the deposited microspheres were deposited at grain-to-grain contacts (about 20% in glass beads, 40% in quartz sand) under the conditions examined. The deposited microsphere concentrations decreased log-linearly with increasing transport distance regardless of the environment of deposition (grain-to-grain contact versus single-contact deposition). The profile shape was, therefore, consistent with filtration theory, and the observed deposition rate coefficients were also well predicted by filtration theory. The ability of filtration theory to predict the magnitude and spatial distribution of deposition demonstrates that filtration theory captures the essential elements of deposition in the absence of an energy barrier despite a lack of accounting for grain-to-grain contacts. The observed factor of 2 greater deposition at grain-to-grain contacts in quartz sand relative to equivalently sized glass beads is consistent with greater grain-to-grain contact lengths and greater fraction of small pores in the quartz sand relative to the glass beads, as determined via a pore structure analysis algorithm (medial axis algorithm).  相似文献   

10.
In this work, the imaging x-ray microtomography technique, new to the field of food science, was used for the analysis of fat microstructure and quantification of the fat present in cream cheese-type products. Five different types of commercially produced cheeses, chosen for their variability of texture, were used for this experiment: sample A, sample B, sample C, sample D, and sample E. Appropriate quantitative 3-dimensional parameters describing the fat structure were calculated (e.g., the geometric parameter percentage of fat volume was calculated for each image as a representation of the percentage of total fat content within the sample). The dynamic-mechanical properties of these samples were also studied using a controlled-strain rotational rheometer. Storage modulus and loss modulus were determined in a frequency range of 0.01 to 10 Hz. The strain value was obtained by preliminary strain sweep oscillatory trials to determine the linear viscoelastic region of the cream cheese-type products. Statistical correlation analysis was performed on the results to help identify any microstructural-mechanical structure relationships. The results from this study show that microtomography is a suitable technique for the microstructural analysis of fat in cream cheese-type products, as it does not only provide an accurate percentage of the volume of the fat present but can also determine its spatial distribution.  相似文献   

11.
The effect of two baking conditions 240 °C and 220 °C (corresponding to heating rates 7.39 and 6.11 °C/min respectively) on the cellular structure of bread was investigated using X-ray microtomography. A comparison between helium pycnometry and X-ray microtomography was carried out and confirmed the quality of analysis in 3-D. Porosity profiles were determined in the interface crust/crumb and showed higher porosity and lower density of the upper crust when increasing heating rate and baking with steaming. The porosity profile of the whole slice bread showed differences between breads baked at 220 °C and 240 °C; that can be explained by the non uniformity in local expansion during baking resulting in different areas of variable density. Higher density was found in the bottom of the slice due to compression forces during baking. However, the upper zone of the slice was more porous, in relation with the expansion. These differences influence the texture and led to different kinetics of staling. Results of tortuosity confirm that the relative path length is shorter along the height related to the expansion of the bread during baking. Additionally, the relative path length through the pores is shorter when baking at 240 °C than when baking at 220 °C, in relation with porosity.  相似文献   

12.
Understanding foam microstructure formation is important for a priori design and engineering of new biopolymer-based products for both food and industrial applications. However, this has been hindered by unavailability of an imaging technology to characterize the cellular structure of foams accurately. This study investigated a non-invasive imaging technology, X-ray microtomography (XMT), for visualization and measurement of microstructural features of biopolymer foams. Brittle corn starch foams with two levels (5% and 15%) of whey protein concentrate (34% protein) factorialized with two moisture contents (26% or 34%) were produced using extrusion. XMT allowed non-invasive imaging of sample cross-sections at various depths, and facilitated accurate and hitherto impossible measurements of features like true cell size distribution (bi-modal), average diameter (0.58 to 2.27 mm), open wall area fraction (0.068 to 0.099), cell wall thickness (0.09 to 0.15 mm), and true void fraction (0.63 to 0.84). Results indicated XMT is superior to conventional imaging techniques for characterizing foam microstructure.  相似文献   

13.
14.
Computational simulations of food processes such as baking, frying, and cooling require transport properties in order to accurately model the process. Coupled with the increased usage of X-ray computed microtomography to better understand manufactured food microstructures other than simple observation, there is an avenue to improve transport models, safety, and process optimization. This work does not focus on the development of new software or simulations but on taking existing software available in other fields of research and applying it to published images of food products to show how it can be used to improve our understanding of food. The two examples of food systems are apple and rice. Using both foods, this work presents open source computational software to calculate intrinsic permeability using a lattice-Boltzmann simulation, pore-size distribution, pore connectivity using the Hoshen and Kopelman algorithm, and vapor diffusivity and tortuosity of water by a random-walk. Simulations are validated when available.Industrial relevanceThis work is extremely relevant to industry in that it allows for more quantitative data from X-ray μCT. Therefore, the increased data allows for improved product design, process optimization, and food safety. Additionally, the quantitative transport properties garnered can help improve transport models. These simulations can provide useful information where conventional experimentation will not always work.  相似文献   

15.
Charcoal, the residue of incomplete biomass burning that is found in many soils and sediments, is considered a high affinity sorbent for organic pollutants. However, little is known about the microscopic processes controlling sorption. The purpose of this study was to gain molecular-scale insight into the sorption on a charcoal of three weakly soluble aromatic compounds [benzene (BEN), toluene (TOL), and nitrobenzene (NBZ)] by conducting both single-solute and bi-solute experiments. The charcoal (420 m2 g(-1)) was produced from maple wood shavings by oxygen-limited pyrolysis at 673 K. Solute affinity for charcoal followed the order NBZ > TOL > BEN. Commonly employed sorption models did not adequately describe the single-solute isotherms. Competition in both TOL-BEN and the TOL-NBZ bi-solute systems was strong. Normalization of the isotherms for the hydrophobic driving force by using an existing free energy correlation between sorption and partitioning to an inert solvent (benzene or n-hexadecane) with a nonpolar aromatic compound calibration set resulted in a finding of enhanced sorption of NBZ relative to the coalesced BEN and TOL isotherms, indicating some specificity in the interaction of NBZ. The competitive data indicated 1:1 molar competition between BEN and TOL and between NBZ and TOL, showing conclusively that this specificity was not due to a subpopulation of sorption sites unique to NBZ. H-bonding was ruled out, as the relative affinity for the sorbent among the solutes did not change at all when increasing the solution pH from 6.5 to 11. 1H NMR experiments showed molecular complexation in chloroform between NBZ and model graphene polycyclic aromatic units (naphthalene, phenanthrene, and pyrene) which was absentfor BEN and TOL. This result, in combination with the results of a companion study (Zhu and Pignatello, Environ. Sci. Technol. (in press)), is used to support the existence of pi-pi electron donor-acceptor interactions between NBZ (electron acceptor) and the polycyclic aromatic charcoal surface (electron donor) as the cause of enhanced NBZ sorption.  相似文献   

16.
Chemical speciation determines Se solubility and therefore its bioavailability and potential for transport in the environment. In this study we investigated the speciation of Se in soil developed on reclaimed mine sites in the U.S. Western Phosphate Resource Area (WPRA) using micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy and micro-X-ray fluorescence (micro-XRF) mapping. Selenium was nonuniformly distributed in the soils and positively correlated with Fe, Mn, Cu, Zn, and Ni. Sixteen points of interest (POI) from three soil samples were analyzed with micro-XANES spectroscopy. The XANES data indicated that Se is present in the soils in at least three oxidation states, Se(-II, 0), Se(IV), and Se(VI). Selenides or elemental Se dominated 7 of the 16 POI. Selenate was the dominant species at only one of the POI. The remaining eight POI were composed of both Se(IV) and Se(VI), with minor Se(-II, 0) contributions. The results of this research suggest that the reduced Se species in the soil parent material are oxidizing to Se(VI), one of the more mobile species of Se in the environment. This information can be used to better predict and manage Se availability in soils.  相似文献   

17.
The use of commercially available solid phase extraction (SPE) cartridges for the fractionation of Al and Fe in soil water is described. The quantitative determination was done by inductively coupled plasma atomic emission spectrometry (ICP-AES). Different types of SPE cartridges, based on cation exchange, anion exchange, and chelation were studied. To avoid pH changes, the SPE cartridge should be conditioned with a buffer that has a pH close to that of the sample. Both strong cation exchange (SCX) and chelation were found to work well, whereas low recovery was observed for Al when anion exchange was used. For Fe, the sum of the anionic and cationic fractions that passed through the cartridges was nearly 100%. The results obtained for Al for 23 soil water samples using a SPE/SCX cartridge and ICP-AES were compared with equilibrium calculations using the program ALCHEMI and also with a fractionation method that was based on separation on a manually prepared SCX column and detection by molecular spectrophotometry, after complexation with pyrocatechol violet (SCX-PCV method). The SPE/SCX-ICP-AES results for the labile Al fraction (Al bound to the SCX cartridge) showed an acceptable correlation with the results obtained by the equilibrium calculations, except for the samples with the highest DOC concentrations, whereas the values obtained for labile Al by the more traditional SCX-PCV method were much lower. We recommend that the SPE/SCX-ICP-AES procedure described in this work be selected for the fractionation of Al and Fe species in soil and freshwater samples.  相似文献   

18.
Arsenic sorption onto maghemite potentially contributes to arsenic retention in magnetite-based arsenic removal processes because maghemite is the most common oxidation product of magnetite and may form a coating on magnetite surfaces. Such a sorption reaction could also favor arsenic immobilization at redox boundaries in groundwaters. The nature of arsenic adsorption complexes on maghemite particles, at near-neutral pH under anoxic conditions, was investigated using X-ray absorption fine structure (XAFS) spectroscopy at the As K-edge. X-ray absorption near edge structure spectra indicate that As(III) does notoxidize after 24 h in any of the sorption experiments, as already observed in previous studies of As(III) sorption on ferric (oxyhydr)oxides under anoxic conditions. The absence of oxygen in our sorption experiments also limited Fenton oxidation of As(III). Extended XAFS (EXAFS) results indicate that both As(III) and As(V) form inner-sphere complexes on the surface of maghemite, under high surface coverage conditions (approximately 0.6 to 1.0 monolayer), with distinctly different sorption complexes for As(III) and As(V). For As(V), the EXAFS-derived As-Fe distance (approximately 3.35 +/- 0.03 A) indicates the predominance of single binuclear bidentate double-corner complexes (2C). For As(III), the distribution of the As-Fe distance suggests a coexistence of various types of surface complexes characterized by As-Fe distances of approximately 2.90 (+/-0.03) A and approximately 3.45 (+/-0.03) A. This distribution can be interpreted as being due to a dominant contribution from bidentate binuclear double-corner complexes (2C), with additional contributions from bidentate mononuclear edge-sharing (2E) complexes and monodentate mononuclear corner-sharing complexes (1V). The present results yield useful constraints on As(V) and As(III) adsorption on high surface-area powdered maghemite, which may help in modeling the behavior of arsenic at the maghemite-water interface.  相似文献   

19.
A molecularly imprinted polymer (MIP) was synthesized using the herbicide metsulfuron-methyl (MSM) as a template, 2-(trifluoromethyl)acrylic acid as a functional monomer, divinylbenzene as a cross-linker, and dichloromethane as a porogen. This polymer was used as a solid-phase extraction material for the quantitative enrichment of five sulfonylureas (nicosulfuron, thifensulfuron-methyl, metsulfuron-methyl, sulfometuron-methyl, and chlorsulfuron) in natural water and soil samples and off-line coupled to a reversed-phase HPLC/diode array detection (HPLC/DAD). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. It has been shown that the nonspecific binding ability of the sulfonylureas to the polymer largely increased along with increasing the concentration of Ca2+ ions in the water sample, whereas complexation of divalent ions with EDTA eliminated this interference completely. The stability of MIP was tested by consecutive percolation of water sample, and it was shown that the performance of the MIP did not vary even after 200 enrichment and desorption cycles. Recoveries of the five sulfonylureas extracted from 1 L of tap water and surface water samples such as river water and rainwater at a 50 ng/L spike level were not lower than 96%. The recoveries of sulfonylureas extracted from 10-g soil sample at the 50 microg/kg level were in the range of 71-139%. Depending on the particular compound, the limit of detection varied from 2 to 14 ng/L in water and from 5 to 12 microg/kg in soil samples. The MIP was also compared with a commercially available C-18 column and an immunoaffinity support with encapsulated polyclonal anti-MSM antibodies in sol-gel glass.  相似文献   

20.
This study aimed to characterize Salmonella Enteritidis (SE) isolated from blood (n = 12) and feces (n = 68) of salmonellosis victims in Southern Brazil. All isolates were submitted to antimicrobial susceptibility testing, PCR-ribotyping, and XbaI macrorestriction Pulsed-Field Gel Eletrophoresis (PFGE). Results demonstrated high levels of ampicillin and nalidixic acid resistance, and strains isolated in different geographic regions were clustered together, presenting a common resistance profile. All strains demonstrated similar and related PCR-ribotyping patterns (R1, R2, and R3); being that the predominant profile R1 grouped 47.5% of the strains. PFGE profile P1 grouped the majority of the strains (96.25%), suggesting a clonal relationship among the strains or inability of molecular typing methods to discriminate strains of this serovar. Results suggested on an increase in antimicrobial resistance and that strains of S. Enteritidis with similar PFGE and PCR-ribotyping profiles were involved in several salmonellosis outbreaks in Southern Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号