首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
锂电池组与柴油机构成的混合动力起重机系统是港口节能减排的一项重要技术。针对起重机再生制动能量的回收,设计了双向DC-DC变换器来实现锂电池组储能系统的两种工作模式(再生制动模式和锂电池组放电模式);对双向DC-DC变流器升压工作方式设计了双闭环控制器,降压工作方式设计了电流环和电压环两种控制器,并进行了对比,从而实现了对锂电池组储能系统充、放电过程和不同运行模式间切换过程的控制。运用PLECS搭建了系统仿真模型,仿真结果表明,在制动能量回收过程中,采用电压环控制器可以实现较高效率的制动能量回收。  相似文献   

2.
钱龙 《信息通信》2016,(4):78-80
文章基于对48V混合动力系统的研究,设计了一款48V混合动力控制器。定义了48V控制系统的架构,设计了控制器的硬件,根据48V混合动力的1功能,开发48V起动、能量回收、加速助力、48V电池的过电压过电流保护的控制策略,最后通过加速性能试验和NEDC循环工况试验验证了控制策略,实现了加速性的改善和降低油耗的设计目的。  相似文献   

3.
混合动力汽车HEV(Hybdd-Electric Vehicle)在解决能源利用和环境保护上具有广阔的前景,目前在国内的研制尚处于起步阶段。由于涉及到两套系统(发动机与电动机)的协调工作、发动机的动力性能的控制、降低能源消耗以及污染气体排放等问题,需要对客车的内部参数进行实时观测,以详细了解它的运行状态。因此,一款能够直观地显示客车运行状态的仪表是必不可少的。对于这样一个集内燃机动力和电动机动力为一体的高复杂的系统,若要显示其内部大量的状态参数,仅依靠传统的传感器来传递信息显然是不切实际的,因此充分利用其内部现有的CAN(Controller Area Network)通讯网络,开发一款CAN通讯接口的液晶显示系统尤为重要。  相似文献   

4.
通过引入CAN总线通讯协议、CAN通信结构的电子链路,以及CAN总线分布式控制技术,可针对电动汽车的动力总成结构建构起动力系统控制模型,对整车的电机负载、驱动力矩、加速力矩、制动回馈等能量变化作出控制。经过具体的仿真实验分析得出:利用CAN总线协议、动力总成控制器、电机控制器、电池管理系统等软硬件,开展智能电动汽车的道路测试控制,达到了电动汽车控制系统既定的动力控制目标。  相似文献   

5.
《现代电子技术》2018,(7):97-101
为了使纯电动汽车在制动过程中满足制动安全和充分回收制动能量的需求以及保持一定的制动舒适度,引入最优前端个体系数对NSGA-Ⅱ多目标遗传优化算法进行改进,并将解集筛选模块应用到制动控制器的设计中,随后嵌入到ADVISOR中进行仿真测试。实验结果表明,提出的控制策略可以有效保证足够的制动安全性,在能量回收效率和制动舒适性方面较标准的NSGA-Ⅱ算法优化的控制策略均有提高。  相似文献   

6.
汽车防抱死制动系统是指在制动过程中,自动调节车轮制动力,防上车轮抱死以取得最佳制动效能的电子装置,简称ABS(Auto-1ock braking system).由于汽车制动过程具有明显的非线性、时变性和不确定性等特点,因此ABS的非线性变化分析非常重要.ABS是目前世界上普遍公认的提高汽车制动安全系统的方法之一.主要研究ABS系统制动力的非线性变化,从而提出改进对策.  相似文献   

7.
汽车防抱死制动系统   总被引:1,自引:0,他引:1  
王慭 《电子世界》2002,(3):55-55,54
<正> 防抱死制动系统(Anti-lock Braking System简称ABS)是用电磁传感器测量车轮速度,当传感器检测到车轮抱死时,制动管路上的电机启动以控制阀口的大小,从而调节制动压力。 早期的汽车上的ABS主要是机械式ABS,它是利用惯性飞轮探测车轮是否抱死,从而减小制动力,因为功能简单、适应性差等原因,应用范围很窄。随着大规模及超大规模集成电路技术的发展,微处理器被应用于ABS中,使ABS实现了智能化,可以完成复杂的计算及逻辑控制,从而奠定了现代汽车ABS的基础和基本模式。目前所说的ABS是在传统气压或液压制动系统的基础上,采用电子技术,在制动时防止车轮抱死的机电一体化系统。  相似文献   

8.
《变频器世界》2014,(3):18-18
正欧盟于2013年10月正式启动石墨烯旗舰项目(FET),利用高强度、高导电石墨烯薄膜材料提升电容器物理性能为其探索方向之一,并取得阶段性成果。超级电容在某些特定应用场景优势明显。相较于化学电池,超级电容具有瞬间释放大功率、使用寿命长,低温性能好等优势,广泛应于新能源汽车的某些特定领域。如Maxwell生产的超级电容器主要应用于混合动力客车制动能量回收系统、轨道交通的车载储能系统以及重型卡车的启动电源等方面。但其最大瓶颈为能量密度低(工业化应用的一般为蓄电池的5-15%),较难作为动力来源单独提供能源,未  相似文献   

9.
《现代电子技术》2019,(15):160-164
为了提高混合矿用汽车在上坡时的驱动力及下坡时的制动力,对带有电力再生制动系统的混合矿用汽车进行建模仿真,并对系统中的关键元件进行参数设计。依据某款4×2机械传动矿用车为原型,改进原有系统,并进行单独制动和驱动的仿真,设置电机输出不同的转矩,进行对比仿真分析,从而得出对电池电量、速度、制动效果的影响,验证后驱单轴并联电力再生制动能量回收系统的可行性。结果表明:混合矿用自卸车加上再生制动系统,各个挡位的爬坡度性能提高了5%左右,制动效率也提高了,在上坡和加速时可提供较大的转矩,再生制动系统不仅提高了动力性能,同时对整车燃油经济性也有所提高。  相似文献   

10.
Molex公司推出一款32电路线对线连接系统。 CMC模块化混合连接系统专门针对高传导性应用和严苛环境应用而设计,并且获广泛认可为用于汽车和运输动力传动应用的业界标准接口,应用包括发动机控制单元(ECU)、自动变速箱、悬挂控制器和电气泊车制动。  相似文献   

11.
Hybrid electric vehicles (HEVs) use multiple sources of power for propulsion which provides great ease and flexibility to achieve advanced controllability and additional driving performance. In this paper, the electric motor in HEV and electric vehicle (EV) propulsion systems is used to achieve antilock braking performance without a conventional antilock braking system (ABS). The paper illustrates that the antilock braking of HEV can be easily achieved using iterative learning control for various road conditions. A vehicle model, a slip ratio model, and a vehicle speed observer were developed to control the antilock performance of HEV during braking. Through iterative learning process, the motor torque is optimized to keep the tire slip ratio corresponding to the peak traction coefficient during braking. Simulations were performed on a compact size vehicle to validate the proposed control method. The control algorithm proposed in this paper may also be used for the ABS control of conventional vehicles.  相似文献   

12.
随着环保问题和能源问题的日益严重,电动汽车因其零排放、低噪声等优点受到了广泛的关注,世界各国都将新能源汽车作为汽车工业的发展方向。纯电动公交车的制动系统能在车辆下坡或减速的时候将一部分车辆的动能转化为电能存在超级电容中。本文研究的制动系统属于再生和液压共同组成的混合制动系统。  相似文献   

13.

The antilock braking system (ABS) is intended to augment braking effectiveness, maintains understeer and oversteer conditions. The braking system performance is degraded in the case of severe road conditions. The research paper presented the effectiveness of smart hybrid antilock braking system in automobiles. The concept of antilock braking system and manual braking system is anticipated to a single unit to overcome the problem facing in the braking system in vehicles. Lyapunov’s theoretical stability approach is used for the system stability. The concept of smart control development is used to solve system complexity and real time issues in different road conditions. Directional Control Valve (DCV) plays very important role in controlling the flow direction of brake oil. The Electronic Control Unit (ECU) is the slip controller for antilock braking system, which takes inputs from brake pedal, speed of all four wheels and various road conditions, processes the accumulated data to generate corresponding PWM signal for the DCVs. The ignition switch and ECU controls the activation and de-activation of directional control valve. The MATLAB/Simulink, 2015 version and experimental analysis using Automation Studio verified the model behavior in both ABS and manual braking mode. The system performance is analyzed during ignition ‘ON’ and ‘OFF’ conditions. The comparative study of the ABS mode and manual mode against wheel speed and vehicle speed is predicted in different time intervals. The smart hybrid ABS control provides better response in comparison to conventional braking. It is experimentally proved that the acclaimed antilock braking system reduces the stopping distance in comparison to the manual braking unit.

  相似文献   

14.
一种新型电动车超级电容-蓄电池复合电源系统   总被引:1,自引:0,他引:1       下载免费PDF全文
针对目前电动车续驶里程短、电池易老化、爬坡能力差、能量回收效率低的缺陷,研究以比功率高、循环寿命长的超级电容作为辅助电源,实现了一种新型超级电容-蓄电池复合电源系统.从超级电容-蓄电池系统的结构出发,对电动车的行驶工况进行了具体分析,构建了超级电容充电模型和超级电容-蓄电池复合电源系统模型.仿真和实际试验结果表明,该复合电源系统能有效回收制动能量,从而使蓄电池的低能量密度和低功率密度等缺陷得到弥补,进而提高电动车动力性能和电能的利用率,使电动车的续驶里程增长,能有效地降低蓄电池电压和电流幅值波动,延长蓄电池的使用寿命.  相似文献   

15.
磁流变液是近年来研究的热点,如今汽车线控技术的不断成熟和发展,利用传感器,控制元件,电子元件驾驶员动作转化为电信号,通过电线传递指令来操纵汽车,而不再需要传统的复杂的机械和液压连接装置.针对新型智能流体材料——磁流变液,我们将其应用于汽车线控制动系统中.利用磁流变液的这一特性设计出的制动器,再辅以合理的控制和信息反馈系统,可以实现制动力与地面附着力的快速匹配,甚至可以完成连续精准无脉动的ABS制动过程,从而代替传统液压机械式ABS,有利于实现底盘集成控制,大幅改善车辆制动性能.  相似文献   

16.
For the purpose of both energy regeneration and directional stability enhancement, regenerative and hydraulic blended braking control of an over-actuated electric vehicle equipped with four individual on-board motors during normal straight-line deceleration is studied. System models which include the vehicle dynamics, tire, electric powertrain, and hydraulic brake models are developed. Mechanisms of directional instability of the electric vehicle during straight-line braking are analyzed. To improve the electric vehicle's safety and performance, novel compensation methods through blended braking are studied. On the basis of half-shaft torque estimation, two new regenerative braking control algorithms are proposed. Simulations of the developed control algorithms are carried out during normal straight-line braking maneuvers. The results and discussions demonstrate that the developed approaches are advantageous when compared with the conventional baseline strategy, with respect to both the directional stability and regeneration efficiency, thus validating the feasibility and effectiveness of the controller synthesis.  相似文献   

17.
防抱死制动系统(ABS)依靠其成熟的技术与优越的性能极大提高了车辆行驶的安全性。在深入研究其工作原理及其测试技术的基础上设计了一套检测装置,它能够模拟实际车辆的运行状态从而达到检测ABS制动性能的目的。检测与控制系统是基于CAN总线和LabVIEW软件完成的,它能够进行数据的采集、处理与通信。实验参数可以通过界面进行设定,并且能够对实验台采集的数据进行实时分析与存储。它能够对不同路况下实验结果进行分析,从而验证ABS的动态性能。  相似文献   

18.
A vehicle stability enhancement control algorithm for a four-wheel-drive hybrid electric vehicle (HEV) is proposed using rear motor driving, regenerative braking control, and electrohydraulic brake (EHB) control. A fuzzy-rule-based control algorithm is proposed, which generates the direct yaw moment to compensate for the errors of the sideslip angle and yaw rate. Performance of the vehicle stability control algorithm is evaluated using ADAMS and MATLAB Simulink cosimulations. HEV chassis elements such as the tires, suspension system, and steering system are modeled to describe the vehicle's dynamic behavior in more detail using ADAMS, whereas HEV power train elements such as the engine, motor, battery, and transmission are modeled using MATLAB Simulink with the control algorithm. It is found from the simulation results that the driving and regenerative braking at the rear motor is able to provide improved stability. In addition, better performance can be achieved by applying the driving and regenerative braking control, as well as EHB control.  相似文献   

19.
制动系统是汽车的一个重要组成部分,是保证行车安全极为重要的一个系统,它的好坏直接影响车辆的平均车速和车辆的运输效率。为保证制动效果的有效发挥;为保证汽车紧急情况具有转向操作能力;为提高车辆的安全性能,故在车辆内部加装了防抱死制动系统(简称ABS)。本文对汽车防抱死系统的组成、工作原理及常见故障进行分析、排除诊断。  相似文献   

20.
The application of fuzzy-based control strategies has gained enormous recognition as an approach for the rapid development of effective controllers for nonlinear time-variant systems. This paper describes the preliminary research and implementation of a fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking systems (ABSs). As the dynamics of the braking systems are highly nonlinear and time variant, fuzzy control offers potential as an important tool for development of robust traction control. Simulation studies are employed to derive an initial rule base that is then tested on an experimental test facility representing the dynamics of a braking system. The test facility is composed of an induction machine load operating in the generating region. It is shown that the torque-slip characteristics of an induction motor provides a convenient platform for simulating a variety of tire/road /spl mu/-/spl sigma/ driving conditions, negating the initial requirement for skid-pan trials when developing algorithms. The fuzzy membership functions were subsequently refined by analysis of the data acquired from the test facility while simulating operation at a high coefficient of friction. The robustness of the fuzzy-logic slip regulator is further tested by applying the resulting controller over a wide range of operating conditions. The results indicate that ABS/traction control may substantially improve longitudinal performance and offer significant potential for optimal control of driven wheels, especially under icy conditions where classical ABS/traction control schemes are constrained to operate very conservatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号