首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
汉语评论文的特点使得可以利用情感主题句表示其浅层篇章结构,该文由此提出一种基于浅层篇章结构的评论文倾向性分析方法。该方法采用基于n元词语匹配的方法识别主题,通过对比与主题的语义相似度大小和进行主客观分类抽取出候选主题情感句,计算其中相似度最高的若干个句子的倾向性,将其平均值作为评论文的整体倾向性。基于浅层篇章结构的评论文倾向性分析方法避免了进行完全篇章结构分析,排除了与主题无关的主观性信息,实验结果表明,该方法准确率较高,切实可行。  相似文献   

2.
该文研究了英语情态句的情感倾向性分析问题。情态句是英语中的常用句型,在用户评论文本中占有很大的比例。由于其独有的语言学特点,情态句中的情感倾向很难被已有的方法有效地分析。在该文中,我们借助词性标签进行了情态句的识别,并提出了一种情态特征用于帮助情态句情感倾向性的分析。为了进一步提高分析效果,我们还给出了通过合并同义情态特征来缓解情态特征稀疏性问题的方法。实验结果表明,在二元及三元情感倾向性分类问题上,该文提出的方法在F值上较经典分类方法分别有4%及7%的提高。  相似文献   

3.
针对微博的情感倾向分析,提出了一种基于关键句分析的微博情感倾向性分析方法SOAS(Sentiment Orientation Analysis Based on Key Sentence Analysis),实现了从句子级到文档级的情感分析。首先,利用关键句抽取算法得到微博关键句,关键句抽取主要考虑位置属性、关键词属性和词频句子频特征这3类属性;之后,结合依存句法分析提出了影响情感倾向的7种词性搭配,以及针对这7种搭配,给出了6种情感计算规则,计算关键句的情感倾向值;最后,以关键句得分为权重,对所有关键句的情感倾向值加权求和得到微博的情感倾向。实现结果表明,基于关键句分析的微博情感倾向算法的情感分析,比同类算法的准确率高出了10.55%,提高了情感分析的准确率,具有高效性。  相似文献   

4.
在研究文本倾向性识别方法的基础上,分别实现基于文本分类、基于语义规则模式和基于情感词的倾向性分析算法.研究情感本体构建和基于HowNet与主题领域语料的情感概念选择方法,两者结合能提高情感本体中概念的全面性和领域针对性.利用情感本体抽取特征词并判断其情感倾向度,结合句法规则及程度副词影响,用特征情感倾向度作为特征权重,采用机器学习的方法对主题网络舆情web文本进行倾向性分析.实验表明,其分析结果有更高的准确率和召回率,实现方案的普遍性和稳定性值得进一步研究.  相似文献   

5.
近年来,针对互联网在线信息的情感分析已经成为自然语言处理领域的一个研究热点。提出一个基于主题的情感向量空间模型,它将文本的潜在主题特征融入情感模型中,结合情感词典,利用多标签分类算法,对文本中句的情感极性进行分析与研究。实验结果表明,基于主题的情感向量空间模型在句的情感极性判断上取得了令人满意的效果。  相似文献   

6.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。  相似文献   

7.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。  相似文献   

8.
文本倾向性分析已成为当前自然语言处理领域的研究热点,其研究成果具有极高的应用价值。针对网络在线中文评论的特点,基于领域本体与情感词典对商品评论倾向性进行分析。其主要思想是首先构建面向商品论坛的领域本体;其次利用情感词典与上下文极性算法计算情感词极性;再次通过将本体与SBV算法相结合,实现评价对象和评价词的二元组抽取;最后完成句子的倾向性分析。实验结果表明,有效提高了句子级倾向性分析的准确率。  相似文献   

9.
10.
吴晨  韦向峰 《计算机科学》2016,43(Z6):435-439
在互联网上用户评价内容中很多比较句的比较结果反映了语句陈述者对比较对象的倾向性态度。根据已有的10类比较句句型总结了它们的常见概念搭配,在基于语义块的语句倾向性分析方法的基础上构建了比较句自动识别系统和比较句倾向性自动分析系统。采用第四届中文倾向性分析评测的语料进行实验,对语料中的比较句进行了识别,对比较句中的要素进行了抽取并且分析了比较句的倾向性,识别结果和倾向性分析结果均好于所有参评系统的平均值。  相似文献   

11.
中文文本情感主题句分析与提取研究   总被引:3,自引:0,他引:3  
樊娜  蔡皖东  赵煜  李慧贤 《计算机应用》2009,29(4):1171-1173
提出一种提取中文文本情感主题句子的方法。首先评估文本中语义概念的概括和归纳能力,确定文本主题概念。将包含主题概念的句子作为候选主题句子,计算各个候选句子的重要度,最终确定文本主题句。然后采用条件随机场模型,选取情感倾向特征和转移词特征训练模型,从文本主题句集合中提取情感主题句。实验证明,以提出的方法为基础进行文本情感分析,避免了与主题无关的句子对分析结果的影响,有效地提高了文本情感分析的准确率。  相似文献   

12.
中文博客主题情感句自动抽取研究   总被引:2,自引:0,他引:2  
博客作为一种大众化的信息及文化载体被越来越多的人所接受,博客信息的情感分析也逐渐成为了信息挖掘领域的热点。目前,在研究情感分析时,多是通过计算词汇的倾向性来完成的。由于并不是所有的带有情感色彩的词汇都是主题相关的,因此,以词为粒度的情感分析存在一定的缺陷。为了解决这一问题,试图从句子层面进行分析,主要研究了与之相关的主题情感句的自动提取问题。为了有效地提取主题相关情感句,设计了一个新颖的基于二元切分的提取算法来获取主题词,然后利用TFIDF算法获取更多的次要主题词,并利用这些主题词重组了那些包含主题词的原始句。因此,如果主题情感句存在的话,那么它一定在这些重组的主题句集合中,只要对该重组句集合进行分析、提取,便能得到主题情感句。最后,利用CRFs将主题句提取问题有效转化为了中文chunking问题,并在抽取实验中取得了很好的结果。  相似文献   

13.
在文本的情感倾向性研究中缺乏对多种情感共现的转折句式的有效分析,为此提出一种专门对转折句式进行有效情感倾向性分析的方法。充分分析汉语中转折句式的结构特点,通过已有资源构建中文情感词典、转折词表、否定词表,依据转折句式中转折词、否定词、情感词的组合规律提出用于进行情感分析的启发式规则。在公开语料库的实验中,该方法能更好地对转折句式进行情感倾向性分析,将此规则融入到传统的朴素贝叶斯情感分类模型后,能获得更高的情感分析精度。  相似文献   

14.
近年来的方面级情感分析模型应用图卷积神经网络(GCN)学习语句的语法结构信息,但是在建模时忽略了已知情感词信息和评论所属的已知话题环境,渐渐不能满足中文社交网络情感分析需求。针对以上问题,提出一种基于词典和深度学习软融合的字词双通道模型(2D-SGCN)。该模型首先基于基础情感词典扩展得到微博领域词典,获得领域适用性的情感词;其次使用预训练模型获得字、词初始特征向量,并在字维度融入方面词和话题信息,分别使用Bi-LSTM和融入情感信息的GCN(SGCN)学习全局与局部信息;应用注意力机制得到方面词最终特征并进行多维度融合;最后将话题和方面词结合进行分类纠正。在SemEval-2014的Restaurant数据集上F▼1为73.67%,在NLPCC2012数据集上F▼1为91.5%,证明了该模型的有效性。  相似文献   

15.
针对互联网上大量自制视频缺少用户评分、推荐准确率不高的问题,提出一种融合弹幕情感分析和主题模型的视频推荐算法(VRDSA)。首先,对视频的弹幕评论进行情感分析,得到视频的情感向量,之后基于情感向量计算视频之间的情感相似度;同时,基于视频的标签建立主题模型来得到视频标签的主题分布,并使用主题分布计算视频之间的主题相似度;接着,对视频的情感相似度和主题相似度进行融合得到视频间的综合相似度;然后,结合视频间的综合相似度和用户的历史记录得到用户对视频的偏好度;同时通过视频的点赞量、弹幕量、收藏数等用户互动指标对视频的大众认可度进行量化,并结合用户历史记录计算出视频的综合认可度;最后,基于用户对视频的偏好度和视频的综合认可度预测用户对视频的认可度,并生成个性化推荐列表来完成视频的推荐。实验结果表明,与融合协同过滤和主题模型的弹幕视频推荐算法(DRCFT)以及嵌入LDA主题模型的协同过滤算法(ULR-itemCF)相比,所提算法推荐的准确率平均提高了17.1%,召回率平均提高了22.9%,F值平均提高了22.2%。所提算法对弹幕进行情感分析,并融合主题模型,以此来完成对视频的推荐,并且充分挖掘了弹幕数据的情感性,使得推荐结果更加准确。  相似文献   

16.
为了有效识别商品虚假评论,提出一种基于情感极性与SMOTE过采样的虚假评论识别方法。首先,根据在线虚假评论的特点,构建一个多维虚假评论特征模型。其次,在情感极性算法中增加了情感极性均值和情感极性标准差等统计指标来全面刻画虚假评论。最后,针对虚假评论中的类不平衡问题,使用SMOTE算法优化随机森林分类模型,从而提高虚假评论识别效果。基于大众点评网的真实评论数据进行了多组实验,实验结果表明该方法在正负样本不平衡的虚假评论数据集中具有更高的准确率、召回率及F值。综合考虑情感极性和正负样本不平衡等因素可帮助电商平台有效过滤虚假评论,为消费者提供更加真实可靠的评论数据。  相似文献   

17.
With the growing availability and popularity of online reviews, consumers' opinions towards certain products or services are generated and spread over the Internet; sentiment analysis thus arises in response to the requirement of opinion seekers. Most prior studies are concerned with statistics-based methods for sentiment classification. These methods, however, suffer from weak comprehension of text-based messages at semantic level, thus resulting in low accuracy. We propose an ontology-based opinion-aware framework – EOSentiMiner – to conduct sentiment analysis for Chinese online reviews from a semantic perspective. The emotion space model is employed to express emotions of reviews in the EOSentiMiner, where sentiment words are classified into two types: emotional words and evaluation words. Furthermore, the former contains eight emotional classes, and the latter is divided into two opinion evaluation classes. An emotion ontology model is then built based on HowNet to express emotion in a fuzzy way. Based on emotion ontology, we evaluate some factors possibly affecting sentiment classification including features of products (services), emotion polarity and intensity, degree words, negative words, rhetoric and punctuation. Finally, sentiment calculation based on emotion ontology is proposed from sentence level to document level. We conduct experiments by using the data from online reviews of cellphone and wedding photography. The result shows the EOSentiMiner outperforms baseline methods in term of accuracy. We also find that emotion expression forms and connection relationship vary across different domains of review corpora.  相似文献   

18.
一种基于知网的中文句子情感倾向判别方法*   总被引:4,自引:0,他引:4  
党蕾  张蕾 《计算机应用研究》2010,27(4):1370-1372
针对基于知网的中文句子情感倾向判别方法中存在的准确率不高的问题,提出采用否定模式匹配与依存句法分析相结合的方法。研究分析了修饰词极性以及否定共享模式,确定修饰词以及扩展极性的定量和否定共享范围,提出依存语法距离的影响因素来计算情感倾向,并且在否定模式匹配后改进句子极性算法。实验结果表明该方法取得了良好的效果。  相似文献   

19.
滕飞  郑超美  李文 《计算机应用》2016,36(8):2252-2256
针对中文微博全局性情感倾向分类的准确性不高的问题,提出基于长短期记忆模型的多维主题模型(MT-LSTM)。该模型是一个多层多维序列计算模型,由多维长短期记忆(LSTM)细胞网络组成,适用于处理向量、数组以及更高维度的数据。该模型首先将微博语句分为多个层次进行分析,纵向以三维长短期记忆模型(3D-LSTM)处理词语及义群的情感倾向,横向以多维长短期记忆模型(MD-LSTM)多次处理整条微博的情感倾向;然后根据主题标签的高斯分布判断情感倾向;最后将几次判断结果进行加权得到最终的分类结果。实验结果表明,该算法平均查准率达91%,最高可达96.5%;中性微博查全率高达50%以上。与递归神经网络(RNN)模型相比,该算法F-测量值提升40%以上;与无主题划分的方法相比,细致的主题划分可将F-测量值提升11.9%。所提算法具有较好的综合性能,能够有效提升中文微博情感倾向分析的准确性,同时减少训练数据量,降低匹配计算的复杂度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号