首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
汉语评论文的特点使得可以利用情感主题句表示其浅层篇章结构,该文由此提出一种基于浅层篇章结构的评论文倾向性分析方法。该方法采用基于n元词语匹配的方法识别主题,通过对比与主题的语义相似度大小和进行主客观分类抽取出候选主题情感句,计算其中相似度最高的若干个句子的倾向性,将其平均值作为评论文的整体倾向性。基于浅层篇章结构的评论文倾向性分析方法避免了进行完全篇章结构分析,排除了与主题无关的主观性信息,实验结果表明,该方法准确率较高,切实可行。  相似文献   

2.
该文研究了英语情态句的情感倾向性分析问题。情态句是英语中的常用句型,在用户评论文本中占有很大的比例。由于其独有的语言学特点,情态句中的情感倾向很难被已有的方法有效地分析。在该文中,我们借助词性标签进行了情态句的识别,并提出了一种情态特征用于帮助情态句情感倾向性的分析。为了进一步提高分析效果,我们还给出了通过合并同义情态特征来缓解情态特征稀疏性问题的方法。实验结果表明,在二元及三元情感倾向性分类问题上,该文提出的方法在F值上较经典分类方法分别有4%及7%的提高。  相似文献   

3.
针对微博的情感倾向分析,提出了一种基于关键句分析的微博情感倾向性分析方法SOAS(Sentiment Orientation Analysis Based on Key Sentence Analysis),实现了从句子级到文档级的情感分析。首先,利用关键句抽取算法得到微博关键句,关键句抽取主要考虑位置属性、关键词属性和词频句子频特征这3类属性;之后,结合依存句法分析提出了影响情感倾向的7种词性搭配,以及针对这7种搭配,给出了6种情感计算规则,计算关键句的情感倾向值;最后,以关键句得分为权重,对所有关键句的情感倾向值加权求和得到微博的情感倾向。实现结果表明,基于关键句分析的微博情感倾向算法的情感分析,比同类算法的准确率高出了10.55%,提高了情感分析的准确率,具有高效性。  相似文献   

4.
在研究文本倾向性识别方法的基础上,分别实现基于文本分类、基于语义规则模式和基于情感词的倾向性分析算法.研究情感本体构建和基于HowNet与主题领域语料的情感概念选择方法,两者结合能提高情感本体中概念的全面性和领域针对性.利用情感本体抽取特征词并判断其情感倾向度,结合句法规则及程度副词影响,用特征情感倾向度作为特征权重,采用机器学习的方法对主题网络舆情web文本进行倾向性分析.实验表明,其分析结果有更高的准确率和召回率,实现方案的普遍性和稳定性值得进一步研究.  相似文献   

5.
近年来,针对互联网在线信息的情感分析已经成为自然语言处理领域的一个研究热点。提出一个基于主题的情感向量空间模型,它将文本的潜在主题特征融入情感模型中,结合情感词典,利用多标签分类算法,对文本中句的情感极性进行分析与研究。实验结果表明,基于主题的情感向量空间模型在句的情感极性判断上取得了令人满意的效果。  相似文献   

6.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。  相似文献   

7.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。  相似文献   

8.
文本倾向性分析已成为当前自然语言处理领域的研究热点,其研究成果具有极高的应用价值。针对网络在线中文评论的特点,基于领域本体与情感词典对商品评论倾向性进行分析。其主要思想是首先构建面向商品论坛的领域本体;其次利用情感词典与上下文极性算法计算情感词极性;再次通过将本体与SBV算法相结合,实现评价对象和评价词的二元组抽取;最后完成句子的倾向性分析。实验结果表明,有效提高了句子级倾向性分析的准确率。  相似文献   

9.
10.
吴晨  韦向峰 《计算机科学》2016,43(Z6):435-439
在互联网上用户评价内容中很多比较句的比较结果反映了语句陈述者对比较对象的倾向性态度。根据已有的10类比较句句型总结了它们的常见概念搭配,在基于语义块的语句倾向性分析方法的基础上构建了比较句自动识别系统和比较句倾向性自动分析系统。采用第四届中文倾向性分析评测的语料进行实验,对语料中的比较句进行了识别,对比较句中的要素进行了抽取并且分析了比较句的倾向性,识别结果和倾向性分析结果均好于所有参评系统的平均值。  相似文献   

11.
社交网络舆情分析是一种新的研究趋势,而其中微博话题的情感倾向性判定是社交网络舆情分析中的热点。针对微博内容特征以及微博间转发、评论关系特征,构建情感分析用词典、网络用语词典以及表情符号库,设计基于短语路径的微博话题情感倾向性判定算法,以及基于多特征的微博话题情感倾向性判定算法,并进一步利用微博间的转发和评论关系对基于多特征的微博话题情感倾向性判定算法进行优化,其微平均正确率与F值分别达到85.3%和79.4%。  相似文献   

12.
庞海杰 《计算机应用》2012,32(7):2038-2040
为及时有效地获取商品评价信息,提出了基于评价对象识别的商品评价信息检测方法。首先在中文分词的基础上,依据词性标注结果抽取商品评价信息中的候选评价对象;然后基于规则过滤和共现扩展的方法得到精准评价对象;最后实现了基于评价对象识别的商品评价信息检测方法。实验结果表明,与基本模型相比,提出的商品评价信息检测方法的F-Measure提高了34.8%,证明了充分挖掘商品评价信息中的评价对象可以非常有效地改善检测方法的性能。  相似文献   

13.
情感分析旨在从文本数据中自动识别主观情感,即文本中表达的观点、态度、感受等,在线评论通常都涉及特定的对象,通过在JST模型基础上加入对象层提出了一种无监督的对象情感联合模型(UOSU model),UOSU模型对每个词同时采样对象、情感和主题标签,最终得到各个主题的对象情感词以及文本的对象情感分布。在汽车评论数据集上进行的情感分类实验取得了74.19%的精确率和73.97%的召回率。  相似文献   

14.
针对“未然态”的舆情信息,挖掘网络热点、焦点及敏感话题,把握舆情动态,提高处置与监管网络突发事件能力等,是舆情分析的重要研究内容。对基于情感词汇Ontology的话题倾向性进行了研究。通过计算与情感词汇Ontology中情感词汇的语义相似度、统计话题语料中情感特征词汇的词频,计算语料中情感特征词汇的倾向性权重;根据情感特征词汇的倾向性权重计算话题倾向性强度和整体倾向性。最后在情感词汇Ontology指导下对话题中每篇语料的情感分类和倾向性强度进行规范化细粒度标注。  相似文献   

15.
对话情感分析旨在识别出一段对话中每个句子的情感倾向,其在电商客服数据分析中发挥着关键作用。不同于对单个句子的情感分析,对话中句子的情感倾向依赖于其在对话中的上下文。目前已有的方法主要采用循环神经网络和注意力机制建模句子之间的关系,但是忽略了对话作为一个整体所呈现的特点。建立在多任务学习的框架下,该文提出了一个新颖的方法,同时推测一段对话的主题分布和每个句子的情感倾向。对话的主题分布,作为一种全局信息,被嵌入到每个词以及句子的表示中。通过这种方法,每个词和句子被赋予了在特定对话主题下的含义。在电商客服对话数据上的实验结果表明,该文提出的模型能充分利用对话主题信息,与不考虑主题信息的基线模型相比,Macro-F1值均有明显提升。  相似文献   

16.
基于情感词汇本体的主观性句子倾向性计算   总被引:1,自引:0,他引:1  
王晓东  王娟  张征 《计算机应用》2012,32(6):1678-1681
如何有效提取句子的主观信息,计算主观性句子倾向性,并对其情感进行细粒度分析,成为一个热门的研究话题。提出了一种基于情感本体的主观性句子倾向性分析方法,分析句子的上下文语义关系,建立规则集。依据情感词汇本体和规则集,提出连续三词词类组合(3-POS)模型识别主观性句子,最后计算主观性句子倾向性值。实验结果表明,该模型对主观性句子的倾向性进行识别和计算的准确率达到81.02%。  相似文献   

17.
方面级情感分析是情感分析任务中更细粒度的子任务,目的是预测给定方面的情感倾向.目前方面级情感分析任务大多采用一定的神经网络提取句子的语义信息,之后进行情感极性预测.本文在此基础上,提出了基于语句结构信息的语义表示方法,即融合语句词性序列中的句型结构信息.本文分别使用两个Bi-LSTM进行语义特征和语句结构特征的提取,构...  相似文献   

18.
互联网以及电子商务的快速发展,使得网络成为人们交流和沟通的公共平台.消费者在网络平台生成的大量在线评论信息产生广泛影响,并引起专家学者的积极关注,基于在线评论进行的情感分析相关研究也不断发展.鉴于此,重点关注基于在线评论的情感分析方法及其应用,在对上述内容概述的基础上分析和思考现有研究存在的问题,并指出未来可能的研究方向和内容.  相似文献   

19.
博客是Web环境中个人表达观点和情感的一种重要载体,一般涉及较宽泛的话题,蕴含丰富的舆情信息。现有针对有关社会事件的用户产生内容进行情感分析的研究多数以篇章级为处理粒度,尚不能满足博客文本深度情感分析的需求。该文提出一种基于LDA话题模型与Hownet词典的中文博客多方面话题情感分析方法。该方法首先利用数据语料训练LDA话题模型,然后以滑动窗口为基本处理单位,利用训练好的LDA模型对博客文本进行话题识别与划分;在此基础上,基于Hownet词典对划分后的话题段落进行情感倾向计算。该方法有助于同时识别博客文本所涉及的多方面子话题及每个子话题上的情感倾向。实验结果表明,该方法不仅能获得较好的话题划分结果,也有助于改善情感分析的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号