首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In IEEE 802.11 wireless LANs, channel quality, network load, as well as the protocol itself are time‐varying, limiting the goodput performance improvement in wireless LANs. Therefore, it becomes critical to dynamically adjust parameters of MAC and PHY layers according to variations of channel quality. In this paper, we propose variable frame size and variable data rate schemes for goodput enhancement. We first propose two optimal frame size predictors: a goodput regulator to maintain the committed goodput for non‐greedy applications and an optimal frame size predictor for maximizing the goodput for greedy applications. Then, we propose a data rate drafting scheme and develop a variable size and variable rate (VSVR) scheme for further goodput improvement. Our extensive simulation results show that the proposed VSVR algorithm can double the channel goodput of current implementations. Moreover, the proposed scheme can be easily integrated with the current implementations of the wireless LAN MAC protocol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A novel link adaptation scheme using linear Auto Regressive (AR) model channel estimation algorithm to enhance the performance of auto rate selection mechanism in IEEE 802.11g is proposed. This scheme can overcome the low efficiency caused by time interval between the time when Received Signal Strength (RSS) is measured and the time when rate is selected. The best rate is selected based on data payload length, frame retry count and the estimated RSS, which is estimated from recorded RSSs. Simulation results show that the proposed scheme enhances mean throughput performance up to 7%, in saturation state, and up to 24% in finite load state compared with those non-estimation schemes, performance enhancements in average drop rate and average number of transmission attempts per data frame delivery also validate the effectiveness of the proposed schelne.  相似文献   

3.
Adaptively adjusting transmit rate and power concurrently to enhance goodput and save energy is a challenging issue in a wireless local area network (WLAN) because goodput enhancement and energy saving are usually two contradictory goals. In this paper, we propose channel-driven rate and power adaptation (CDRPA) schemes and develop a physical (PHY)/medium access control (MAC) cross-layer analytical method incorporating the impacts of Nakagami fading channel and the carrier sense multiple access (CSMA) MAC protocol. The CDRPA scheme has much lower computation complexity than the energy-optimal complete-search scheme. In a multiuser contention scenario, we analyze the energy efficiency and the goodput of the power-first and rate-first CDRPA schemes as well as the energy-optimal complete-search adaptation scheme. At the cost of lower goodput, the power-first scheme has better energy efficiency than the rate-first CDRPA scheme, whereas if the goodput is the main concern, the rate-first CDRPA scheme shall be chosen due to better goodput performance. More interestingly, we find that the power-first CDRPA scheme can achieve about the same goodput and energy efficiency as the energy-optimal complete-search link adaptation scheme.  相似文献   

4.
802.11 networks provide multi-rate capability to offer rate adaptability against the time-varying wireless channel. However, how to switch between the available rates has not been standardized. Existing rate adaptation (RA) solutions assume common transmission power and can only passively tune link rate to match the inferred channel condition via different methods. This simple attitude is neither flexible in traffic-aware link rate selection nor effective in energy conservation and spatial reuse since transmission power may be either too low to sustain the link rate or too high that results in unnecessary energy consumption and worse spatial reuse. Different from existing solutions, we think that link rate switch should be driven by traffic load and power control should be considered with rate adaptation together to conserve energy and increase spatial reuse. To this end, we propose a traffic-aware link rate adaptation scheme (TARA) via power control for multi-rate 802.11 networks. Its basic idea consists of a two-step procedure. Firstly, traffic load is sensed in the MAC layer to decide whether link rate should be increased or decreased for the next transmission. Afterwards, power control is carried out in the PHY layer to guarantee that the new link rate can be sustained while minimizing the transmission power. Extensive simulation results show that TARA outperforms typical existing schemes in terms of energy efficiency and throughput.  相似文献   

5.
Reducing the energy consumption by wireless communication devices is perhaps the most important issue in the widely deployed and dramatically growing IEEE 802.11 WLANs (wireless local area networks). TPC (transmit power control) has been recognized as one of the effective ways to achieve this goal. In this paper, we study the emerging 802.11a/h systems that provide a structured means to support intelligent TPC. Based on a rigorous analysis of the relationship among different radio ranges and TPC's effects on the interference, we present an optimal low-energy transmission strategy, called MiSer, which is deployed in the format of RTS-CTS(strong)-Data(MiSer)-Ack. The key idea of MiSer is to combine TPC with PHY (physical layer) rate adaptation and compute offline an optimal rate-power combination table, then at runtime, a wireless station determines the most energy-efficient transmission strategy for each data frame transmission by a simple table lookup. Simulation results show MiSer's clear superiority to other two-way or four-way frame exchange mechanisms in terms of energy conservation.  相似文献   

6.
The design of efficient IEEE 802.11 physical (PHY) rate adaptation algorithms is a challenging research topic and usually the issues surrounding their implementations on real 802.11 devices are not disclosed. In this paper, we identify and evaluate the key parameters to design such algorithms. We then present a survey on existing PHY rate adaptation mechanisms and discuss their advantages and drawbacks. We also propose three new 802.11 PHY rate adaptation mechanisms, named adaptive auto rate fallback (AARF), closed loop adaptive rate allocation (CLARA), and adaptive multi‐rate retry (AMRR). AARF, proposed for low‐latency systems, has low complexity and obtains similar performance than RBAR in stationary and non‐fading wireless channels. CLARA is a culmination of the best attributes of the transmitter‐based ARF and RBAR control mechanisms with additional practical features such as adaptive fragmentation to improve multipath‐fading channel sensing and to provide feedback control signaling. AMRR is designed for high‐latency systems; it has been implemented and evaluated on an AR5212‐based device. Experimentation results show more than 20% performance improvement in throughput over the default algorithm implemented in the AR5212 MADWIFI driver. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Rate adaptation in wireless networking aims to seek the optimal data transmission rate most appropriate for current wireless channel conditions to make full use of the channel potentials. It is important in wireless networks because (1) most of them support multiple data rates, and (2) wireless channel is unstable with fast changes on which a single rate thereby may not be proper for long. Based on a comprehensive survey of the rate adaptation for IEEE 802.1 networks in literature, this work proposes a rate adaptation scheme, dubbed effective rate adaptation (ERA), for IEEE 802.11 networks. ERA takes advantage of the fragmentation technique in IEEE 802.11 standard and utilizes the lowest rate retransmission in diagnosing frame loss cause (collision or channel degradation), diffusing collision, and promptly recovering frame losses. It also adopts an adaptive rate increase threshold concept to exploit channel potentials. Different from other rate adaptation schemes, ERA effectively addresses two challenges in rate adaptation on IEEE 802.11 networks: (1) it does not require RTS/CTS for loss diagnosis purpose; the use of RTS/CTS that are optional in IEEE standard results in inefficiency on channel utilization; (2) it promptly responds to frame failure due to channel degradation, unlike others waiting till the end of a transmission window or cycle. With extensive simulation, ERA shows its unique strength in different lossy environments, especially in collision‐prone environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Video streaming service over wireless networks is a challenging task because of the changes in the wireless channel conditions that can occur due to interference, fading, and station mobility. Moreover, the IEEE 802.11 WLAN standard does not contain any specifications for the rate adaptation scheme which are useful for improving the wireless link utilization. To provide efficient wireless video streaming service, the rate adaptation scheme should be applied at the low layer and the quality adaptation scheme should be considered at the high layer. To meet this requirement of wireless video streaming, we propose a new cross-layer design for video streaming over wireless networks. This design includes the rate adaptation scheme in the data link and physical layers and the quality adaptation scheme in the application layer. The rate adaptation scheme adjusts the data transmission rate based on the measured RSSI at the sender-side and informs the quality adaptation scheme about the rate limits. Then the quality adaptation scheme utilizes this rate limits to adjust the quality of the video stream. Through performance evaluations, we prove that our cross-layer design improves the wireless link utilization and the quality of the video stream simultaneously.  相似文献   

9.
Erik  Guido  Bangnan  Sven  Bernhard  Sebastian   《Ad hoc Networks》2007,5(5):579-599
This article presents a combined layer two and three control loop, which allows prediction of link breakage in wireless ad hoc networks. The method monitors the physical layer transmission mode on layer two and exploits the gained knowledge at layer three. The mechanism bases on link adaptation, which is used in IEEE 802.11a WLAN to select the transmission mode according to the link quality. The process of link adaptation contains information that is useful to predict link stability and link lifetime. After introducing the IEEE 802.11a Medium Access Control (MAC) and PHY layer, we present insight to the IEEE 802.11a link adaptation behaviour in multi-hop ad hoc networks. The link adaptation algorithm presented here is derived from Auto Rate Fallback (ARF) algorithm. We survey the performance gain of two newly developed route adaptation approaches exploding the prediction results. One approach is Early Route ReArrangement (ERRA) that starts a route reconstruction procedure before link breakage. Hence, an alternative route is available before connectivity is lost. Early Route Update (ERU) is a complementing approach that enhances this process, by communications among routing nodes surrounding the breaking link. The delay caused by route reconstruction can be significantly reduced if prediction and either of our new route discovery processes is used.  相似文献   

10.
基于IEEE 802.11高速无线局域网的速率自适应MAC协议研究   总被引:3,自引:0,他引:3  
目前的IEEE 802.11标准在物理层提供了对多种发送速率的支持,然而在MAC层却没有规定速率自适应的方法。该文研究了高速IEEE 802.11 无线局域网中的速率自适应方案。首先,提出了EACK协议,EACK使用基本速率发送MAC头,并在ACK帧中携带信道信息,因而能够较快速地响应信道的变化,同时具有少的开销;其次,在EACK基础上,提出了一种恒定发送时间(CEACK)的策略,CEACK能够克服传统IEEE 802.11 DCF MAC协议的理论吞吐量上限,并且具有更好的时间公平性能,能够应用于高速的无线局域网。  相似文献   

11.
The IEEE 802.11 standard defines two coordination functions: distributed coordination function (DCF) and point coordination function (PCF). These coordination functions coordinate the shared wireless medium. The PCF uses a centralized polling-based channel access method to support time-bounded services. To design an efficient polling scheme, the point coordinator (PC) needs to obtain information about the current transmission status and channel condition for each station. To reduce overhead caused by polling frames, it is better to poll all stations using one polling frame containing the transmission schedule. In this paper, we propose an efficient polling scheme, referred to as two-step multipolling (TS-MP), for the PCF in wireless local area networks (WLANs). In this new scheme, we propose to use two multipolling frames with different purposes. The first frame is broadcast to collect information such as the numbers of pending frames and the physical-layer transmission rates for the communication links among all stations. The second frame contains a polling sequence for data transmissions designed based on the collected information. This frame is broadcast to all stations. Extensive simulation studies show that TS-MP not only overcomes the aforementioned deficiencies, but also help to implement rate adaptation over time-varying wireless channel.  相似文献   

12.
赵海涛  董育宁  张晖  李洋 《信号处理》2010,26(11):1747-1755
本文针对如何改善无线多跳Mesh网络的服务质量,满足无线多媒体业务对数据传输的带宽、时延、抖动的要求等问题,研究了一种基于无线信道状态和链路质量统计的MAC层最大重传次数的自适应调整算法。该算法通过对无线Mesh网络的无线信道环境的动态感知,利用分层判断法区分无线分组丢失的主要原因是无线差错还是网络拥塞导致,实时调整MAC层的最佳重传次数,降低无线网络中的分组冲突概率。基于链路状态信息的统计和最大重传策略,提出了一种启发式的基于环境感知的QoS路由优化机制HEAOR。该算法通过动态感知底层链路状态信息,利用灰色关联分析法自适应选择最优路径,在不增加系统复杂度的基础上,减少链路误判概率,提高传输效率。NS2仿真结果表明,HEAOR算法能有效减少重路由次数,降低链路失效概率,提高网络的平均吞吐率。本文提出的方法不仅能够优化MAC层的重传,而且通过发现跨层设计的优化参数实现对路径的优化选择。   相似文献   

13.
We study TCP performance over the wireless links deploying a wireless rate-control technique, whose link characteristics are identified by variable link rate and bursty transmission error. We present a TCP enhancement scheme, called rate-adaptive snoop (RA-Snoop). RA-Snoop caches TCP packets selectively based on the wireless channel condition and the cached packets are retransmitted locally over the wireless link in case corruption loss is detected. In addition, for effective adaptation to variable bandwidth, RA-Snoop calculates the window feedback based on the bandwidth-delay product estimation and the queue level, then conveys this feedback information on the receiver's advertised window field in the acknowledgements returning to TCP sources. We compare the performance of RA-Snoop with that of existing schemes in the aspect of goodput and fairness. Results from simulations reveal that RA-Snoop achieves significant improvements over the existing schemes for various traffic scenarios.  相似文献   

14.
Wi-Fi has gained tremendous attention from the research community, yielding successful technological advancements. However, the data throughput efficiency (the ratio of application throughput to the maximum achievable physical data rate) degrades rapidly as the PHY data rate increases when using the current 802.11 medium access control (MAC) protocol. To address this MAC inefficiency, many protocols have been introduced and standardized. This paper describes and examines these state-of-the-art enhancements to MAC efficiency for the 802.11 standard, and proposes a CLACK (Cross-Layer ACK) method that tackles this issue in totally different manner to those previous schemes. The main idea is simple: When a receiver sends an ACK, it transmits the data using the ACK transmission opportunity, and avoids channel contention necessary for data transmissions. The receiver’s short signature is piggybacked in the PHY instead of the MAC to acknowledge the packet reception. We have implemented CLACK using USRP toolkits and GNU Software Define Radio. Our implementation demonstrates the feasibility of our key techniques for both PHY and MAC design. Further, we use detailed simulation to evaluate CLACK in general wireless environments under different traffic loads and varying channel conditions. Our results show that CLACK gains up to 52 % in terms of throughput, when compared to the basic 802.11 scheme, and up to 18 % when compared to existing advanced 802.11e/n schemes.  相似文献   

15.
In this paper, we propose a probability-statistical capacity-prediction scheme to provide probabilistic quality-of-service (QoS) guarantees under the high traffic load of IEEE 802.11 wireless multimedia Mesh networks. The proposed scheme perceives the state of wireless link based on the MAC retransmission statistics and calculates the statistical channel capacity especially under the saturated traffic load. Via a cross-layer design approach, the scheme allocates network resource and forwards data packets by taking the interference among flows and the channel capacity into consideration. Extensive experiments have been carried out on the basis of IEEE 802.11 protocols in order to demonstrate the superiority of the proposed scheme over the existing location-based QoS optimization delivery algorithm in terms of retransmission count, successful delivery rate, and end-to-end delay on the condition of time-varying multi-hop wireless links.  相似文献   

16.
This paper presents a comprehensive performance study of closed-loop fast link adaptation (FLA) in the context of IEEE 802.11n, spanning the physical (PHY) and medium-access control (MAC) layers. In particular, a semi-analytical model is derived for Basic and request to send/clear to send (RTS/CTS) access schemes of the distributed coordination function (DCF), that applies to both, open- and closed-loop strategies. Numerical results serve to demonstrate the accuracy of the proposed model and the superiority of FLA, in terms of MAC goodput, in comparison to open-loop policies. Realistic operating conditions such as outdated feedback information and the use of statistical packet length distributions, issues not treated in previous studies, have also been considered. Moreover, it is shown that incorporating a time-out mechanism in the FLA scheme, weighing down the influence of channel information as this becomes outdated, is a useful strategy to counteract its deleterious effects.  相似文献   

17.
Technological advances in low-power digital signal processors, radio frequency (RF) circuits, and micromechanical systems (MEMS) have led to the emergence of wirelessly interconnected sensor nodes. The new technological possibilities emerge when a large number of tiny intelligent wireless sensor nodes are combined. The sensor nodes are typically battery operated and, therefore, energy constrained. Hence, energy conservation is one of the foremost priorities in design of wireless sensor networks (WSNs) protocols. Limited power resources and bursty nature of the wireless channel are the biggest challenges in WSNs. Link adaptation techniques improve the link quality by adjusting medium access control (MAC) parameters such as frame size, data rate, and sleep time, thereby improving energy efficiency. In This work, our study emphasizes optimizing WSNs by building a reliable and adaptive MAC without compromising fairness and performance. Here, we present link adaptation techniques at MAC layer to enhance energy efficiency of the sensor nodes. The proposed MAC uses a variable frame size instead of a fixed frame size for transmitting data. In order to get accurate estimations, as well as reducing the computation complexity, we utilize the extended Kalman filter to predict the optimal frame size for improving energy efficiency and goodput, while minimizing the sensor memory requirement. Next, we designed and verified different network models to evaluate and analyze the proposed link adaptation schemes. The correctness of the proposed theoretical models have been verified by conducting extensive simulations. We also prototype the proposed scheme with the MAC protocol on Berkeley Motes. Both prototype and simulation results show that the proposed algorithms improve the energy efficiency by up to 15%.  相似文献   

18.
Collision-aware design of rate adaptation for multi-rate 802.11 WLANs   总被引:2,自引:0,他引:2  
One of the key challenges in designing a rate adaptation scheme for IEEE 802.11 wireless LANs (WLANs) is to differentiate bit errors from link-layer collisions. Many recent rate adaptation schemes adopt the RTS/CTS mechanism to prevent collision losses from triggering unnecessary rate decrease. However, the RTS/CTS handshake incurs significant overhead and is rarely activated in today's infrastructure WLANs. In this paper we propose a new rate adaptation scheme that mitigates the collision effect on the operation of rate adaptation. In contrast to previous approaches adopting fixed rate-increasing and decreasing thresholds, our scheme varies threshold values based on the measured network status. Using the "retry" information in 802.11 MAC headers as feedback, we enable the transmitter to gauge current network state. The proposed rate adaptation scheme does not require additional probing overhead incurred by RTS/CTS exchanges and can be easily deployed without changes in firmware. We demonstrate the effectiveness of our solution by comparing with existing approaches through extensive simulations.  相似文献   

19.
We provide a theoretical framework for cross-layer design in multimedia communications to optimize single-user throughput by selecting the transmitted bit rate and payload size as a function of channel conditions for both additive white Gaussian noise (AWGN) and Nakagami-m fading channels. Numerical results reveal that careful payload length adaptation significantly improves the throughput performance at low signal to noise ratios (SNRs), while at higher SNRs, rate adaptation with higher payload lengths provides better throughput performance. Since we are interested in multimedia applications, we do not allow retransmissions in order to minimize latency and to reduce congestion on the wireless link and we assume that packet loss concealment will be used to compensate for lost packets. We also investigate the throughput and packet error rate performance over multipath frequency selective fading channels for typical payload sizes used in voice and video applications. We explore the difference in link adaptation thresholds for these payload sizes using the Nafteli Chayat multipath fading channel model, and we present a link adaptation scheme to maximize the throughput subject to a packet error rate constraint.  相似文献   

20.
In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmission count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号