首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction kinetics and mechanisms between 8 mol% yttria-stabilized zirconia (YSZ) and 30 mol% Sr-doped lanthanum manganite (La0.65Sr0.30MnO3, LSM) with A-site deficiency for the application of planar solid oxide fuel cells (SOFCs) were investigated. The LSM/YSZ green tapes were cofired from 1200° to 1400°C for 1 to 48 h and then annealed at 1000°C for up to 1000 h. The results showed that the diffusion of manganese cations first caused the amorphization of YSZ, and then the formation of small La2Zr2O7 (LZ) or SrZrO3 (SZ) crystals if treated for a longer time at 1400°C. The ambipolar diffusion of the Mn–O pair, transported through the migration of oxygen vacancy, plays an important role in the formation of secondary phases. The diffusion of LSM to YSZ and substitution of Mn for Zr both result in the enhanced concentration of oxygen vacancy, leading to the formation of a void-free zone (VFZ). No additional reaction products in annealed LSM/YSZ specimens, treated at 1000°C for 1000 h, were detected. The interfacial reactions, detailed reaction kinetics, and mechanisms are reported.  相似文献   

2.
氧化钇稳定氧化锆(yttria-stabilized zirconia,YSZ)是目前使用最多的电解质材料,探索了以YSZ纳米粉体为原料,采用固相法制备YSZ电解质薄片。采用X射线衍射(XRD)测试了它的微结构;采用交流四端子法测瓷体的电导率。实验表明,最佳烧结温度在1300℃,气孔含量少、晶粒均匀,电导率高,800℃时为0.08 S.m-1,是理想的高温电解质材料。  相似文献   

3.
YBa2Cu3O7−δ (YBCO) films were fabricated via a fluorine-free metal organic deposition (MOD) method followed by high-temperature, low oxygen partial pressure annealing. Trimethyl acetate salts of copper, yttrium, and barium hydroxide were used as the precursors, which were dissolved in proponic acid- and amine-based solvents. After spin-coating and burnout, samples were annealed at 740°C in 180 ppm oxygen partial pressure and exposed to humid atmosphere for different times. A critical transition temperature, T c( R =0) of 90.2 K and a transport critical current density ( J c) of 0.55 MA/cm2 (77 K and self-field) were obtained for 0.2 μm YBCO films on CeO2-buffered yttria-stabilized zirconia (YSZ) substrates. X-ray studies shows that the YBCO films have sharp in-plane and out-of-plane texture for all samples; however, the porosity of the YBCO film varies with the time of exposure to the humid atmosphere. A reaction between YBCO and CeO2 during the high-temperature anneals and formation of the reaction product BaCeO3 was confirmed by X-ray diffraction (XRD) studies. The XRD and transmission electron microscopy analysis indicated that the epitaxial relations in the film were YBCO (00 l )//CeO2 (00 l )//YSZ (00 l ) and YBCO [100]//CeO2 [110]//YSZ [110].  相似文献   

4.
A yttria-stabilized zirconia (YSZ) thin film on an La0.8Sr0.2MnO3 porous cathode substrate was prepared, using electrophoretic deposition (EPD) to fabricate a solid oxide fuel cell (SOFC). The electrical conductivity of an La0.8Sr0.2MnO3 substrate is satisfactorily high at room temperature; therefore, YSZ powder could be deposited electrophoretically onto an La0.8Sr0.2MnO3 substrate without any extra surface treatment, such as a metal coating. Successive repetition of EPD and sintering was required to obtain a film without gas leakage, because of the thermal expansion coefficient mismatch between the YSZ and the La0.8Sr0.2MnO3 substrate. On the other hand, the electromotive force of the oxygen concentration in the cell that used YSZ film prepared via EPD increased and attained the theoretical value when the number of deposition and calcination cycles was increased. Six or more successive repetitions were required to obtain a YSZ film without gas leakage. A planar-type SOFC was fabricated, using nickel as the anode and YSZ film (∼10 μm thick) that had been deposited onto the La0.8Sr0.2MnO3 substrate as the electrolyte and cathode. The cell exhibited an open circuit voltage of 1.0 V and a maximum power density of 1.5 W/cm2. Thus, the EPD method could be used as a colloidal process to prepare YSZ thin-film electrolytes for SOFCs.  相似文献   

5.
The effect of deposition conditions on the growth of yttria-stabilized zirconia (YSZ) films on textured silver substrates using the chemical vapor deposition (CVD) process was investigated. The crystalline structure of the YSZ film depended strongly on the deposition conditions, such as substrate temperature and deposition time. YSZ films prepared at 750°C using β-diketone chelate sources, which had an orientation of c -axis normal to the textured silver substrate surface. The YSZ surface was dense but not rough, and the YSZ film grew granular-like. The cross-sectional image of YSZ film showed the columnar growth feature; the growth rate was ∼20 nm/min.  相似文献   

6.
The results of a study on the optical and electrical properties of (La0.8Sr0.2)0.9MnO3 (LSM) thin films obtained by a polymeric precursor spin coating technique were presented. This method allowed preparation of optical quality thin films at annealing temperatures around 800°C. Amorphous and crystalline LSM thin films were studied by optical and electrical conductivity measurements. The energy-dependent absorption coefficients for the crystalline specimen were calculated from optical spectra and extra absorption was observed in the range of 1.8–2.5 eV with the exchange-gap excitation behavior in the 3–5 eV range. In comparison to the amorphous specimens, the electrical conductivity of the nanocrystalline specimen increased two to three orders of magnitude with decreasing activation energy. The charge carrier absorption model suggested an increase of the carrier concentration in the nanocrystalline specimen which may be a reason for the change in the electrical conductivity.  相似文献   

7.
注浆成型法制备氧化钇稳定的氧化锆透氧膜及其性能   总被引:1,自引:0,他引:1  
采用注浆成型法制备8%(摩尔分数)氧化钇稳定氧化锆(8YSZ)透氧膜,分析浆料特性、烧结特性和电学性能并将其用于固体透氧膜(SOM)法制备金属。结果表明:当添加4%(质量分数)柠檬酸作为8YSZ浆料分散剂时,浆料相对黏度为1.82,Zeta电位为–43.7mV。透氧膜素坯经1 700℃煅烧2 h后,物相全部转化为立方相,相对密度达到99.1%。在500℃时,1 700℃烧结成型的透氧膜总电阻最小,为149.38Ω,总电导率最大,为5.84×10–4 S/cm。该法制备的膜管经SOM法电解脱氧实验证明具有优良的控氧性能和抗熔盐侵蚀特性。  相似文献   

8.
Spray prints of thermal spray coatings were created on glass slides for air-plasma-sprayed 8-wt%-yttria-partially-stabilized zirconia (YSZ) deposits. The spray parameters such as carrier gas flow rate, standoff distance, and torch power were systematically changed to investigate the influence of these parameters on the YSZ deposit characteristics. The deposit properties such as deposition efficiency (DE), substrate coverage, deposit thickness, and roughness were measured. The deposits sprayed with a 3.5–4.0 L/min carrier gas flow rate at an 80 mm standoff distance exhibited higher values of DE within the range of studied process parameters. The DE increased as much as 25% by varying the carrier gas flow rate from 2.0 to 4.0 L/min. The deposits sprayed at a higher standoff distance and low torch power gave poor deposit characteristics. The deposit characteristics were compared with the in-flight particle parameters and revealed that the deposit characteristics strongly depended on the in-flight particle temperature. Using the in-flight particle properties, the flattening ratio and the splat thickness were calculated. The average size of particles adhering to the substrate was found to drastically change with a change of process conditions, being much less than the average size of the starting powder.  相似文献   

9.
Yttria-partially-stabilized zirconia was atmospherically plasma sprayed by systematically varying the process conditions including carrier gas flow rate, torch power, standoff distance, and Ar/H2 ratio in the plasma gas mixture. The in-flight particle parameters such as temperature, velocity, number, and size were determined using a commercially available diagnostic system. The particle parameters were controlled by the particle trajectory in the plume and plasma jet characteristics. The average temperature and the velocity of particles, which reached their maximum at an intermediate carrier gas flow rate of 3.5 L/min, varied as much as 6% and 25%, respectively, with a 75% variation in the carrier gas flow rate by going from the lowest to the intermediate rates. The average temperature and the velocity of particles were lower for a lower torch power, a higher Ar/H2 ratio, and a larger standoff distance. It was necessary to obtain data on particle populations larger than 1000 for statistically reliable and reproducible information from the diagnostic system.  相似文献   

10.
Zirconia doped with 3.2–4.2 mol% (6–8 wt%) yttria (3–4YSZ) is currently the material of choice for thermal barrier coating topcoats. The present study examines the ZrO2-Y2O3-Ta2O5/Nb2O5 systems for potential alternative chemistries that would overcome the limitations of the 3–4YSZ. A rationale for choosing specific compositions based on the effect of defect chemistry on the thermal conductivity and phase stability in zirconia-based systems is presented. The results show that it is possible to produce stable (for up to 200 h at 1000°–1500°C), single (tetragonal) or dual (tetragonal + cubic) phase chemistries that have thermal conductivity that is as low (1.8–2.8W/m K) as the 3–4YSZ, a wide range of elastic moduli (150–232 GPa), and a similar mean coefficient of thermal expansion at 1000°C. The chemistries can be plasma sprayed without change in composition or deleterious effects to phase stability. Preliminary burner rig testing results on one of the compositions are also presented.  相似文献   

11.
Pieces of saw-cut La0.85Sr0.15MnO3 were joined at 1150° and 1250°C under a compressive stress. The strains to form the joints were ∼0.1. Joints formed by plastic deformation were examined using scanning electron microscopy, and they were indistinguishable from the bulk. The room-temperature direct-current resistivity of the joined pieces was identical to that measured in the bulk material. This indicated that a sound, electrically conducting joint could be formed using plastic deformation (grain-boundary sliding) with little surface preparation.  相似文献   

12.
We have found a new phase of La0.05Sr0.95MnO3 with a 30-layer rhombohedral structure by using electron microscopy. The lattice constants were hexagonal axes of a = 0.5444 nm and c = 6.7582 nm. Both weak and strong intensities appeared in selected area diffraction (SAD) patterns. The strong intensities were caused by the periodicity of 15 (Sr,La)O3 layers that had a new stacking sequence of (cchch)3. However, the weak intensities indicated that the 15-layer structure has modulation along the c -direction that is twice as long as that of the structure indicated by the strong intensities. We concluded that the modulation of the 30-layer structure was produced by the introduction of two kinds of oxygen octahedra, Mn3+O6 and Mn4+O6.  相似文献   

13.
High-resolution transmission electron microscopy and optical diffractograms have revealed that chemically vapor deposited films of superconducting YBa2Cu3O x react to form an interaction layer with single-crystal yttriastabilized zirconia. The approximately 5 nm thick interlayer was identified as BaZrO3. Zirconium was also found to diffuse through the entire YBa2Cu3O x film.  相似文献   

14.
Partially stabilized zirconia (PSZ) powders were fully densified by microwave heating using a domestic microwave oven. Pressed powder compacts of PSZ were sandwiched between two ZnO–MnO2–Al2O3 ceramic plates and put into the microwave oven. In the first step, PSZ green pellets were heated by self-heating of ZnO–MnO2–Al2O3 ceramics (1000°C). In the second step, the heated PSZ pellets absorbed microwave energy and self-heated up to a higher temperature (1250°C), leading to densification. The density of PSZ obtained by heating in the microwave oven for 16 min was 5.7 g/cm3, which was approximately equal to the density of bodies sintered at 1300°C for 4 h or 1400°C for 16 min by the conventional method. The average grain size of the sample obtained by this method was larger than the average grain size of samples sintered by the conventional method with a similar heating process.  相似文献   

15.
Ultrafine-grained monoclinic ZrO2 polycrystals (MZP) and 3-mol%-Y2O3-stabilized tetragonal ZrO2 polycrystals (3Y-TZP) were obtained by hot isostatic pressing (HIP). Both MZP and TZP were "high-purity" materials with impurities less than 0.1 wt%. The deformation behavior was studied at 1373 K, which was lower than the monoclinic ↔ tetragonal transition temperature. The stress exponent of 3Y-TZP with grain size of 63 nm was 3 in the higher stress region, and increased from 3 to 4 with decreasing stress. The deformation of MZP was characterized by a stress exponent of 2.5 over a wide stress range. The strain rate of 3Y-TZP was slower than that of MZP by 1 order of magnitude. It was suggested that either the doped yttrium or the difference in the crystal structure affected the diffusion coefficients of ZrO2.  相似文献   

16.
Nanocrystalline La0.9Sr0.1Al0.85Co0.05Mg0.1O3 oxide powder was synthesized by a citrate–nitrate auto-ignition process and characterized by thermal analysis, X-ray diffraction, and impedance spectroscopy measurements. Nanocrystalline (50–100 nm) powder with perovskite structure could be produced at 900°C by this process. The powder could be sintered to a density more than 96% of the theoretical density at 1550°C. Impedance measurements on the sintered samples unequivocally established the potential of this process in developing nanostructured lanthanum aluminate-based oxides. The sintered La0.9Sr0.1Al0.85Co0.05Mg0.1O3 sample exhibited a conductivity of 2.40 × 10−2 S/cm in air at 1000°C compared with 4.9 × 10−3 S/cm exhibited by La0.9Sr0.1Al0.85Mg0.15O3.  相似文献   

17.
Y-PSZ ceramics with 5 wt% Al2O3 were synthesized by a sol–gel route. Experimental results show that powders of metastable tetragonal zirconia with 2.7 mol% Y2O3 and 5 wt% Al2O3 can be fabricated by decomposing the dry gel powder at 500°C. Materials sintered in an air atmosphere at 1500°C for 3 have high density (5.685 g/cm3), high content of metastable tetragonal zirconia (>96%), and high fracture toughness (8.67 MPa.m1/2). Compared with the Y-PSZ ceramics, significant toughening was achieved by adding 5 wt% Al2O3.  相似文献   

18.
During a rapid thermal annealing process at 850°C in a N2 ambient, an as-deposited amorphous YMnO3 thin film on Si (100) substrates was crystallized with two distinct layers. High-resolution transmission electron microscopy showed a top layer of c -axis-oriented YMnO3 and a bottom layer of polycrystalline YMnO3 in the 100-nm-thick YMnO3 thin film. The abrupt change of the crystalline orientation from the c -axis-preferred orientation to the random orientation is caused primarily by high stress induced by the c -axis-oriented YMnO3 layer. High-resolution X-ray diffraction showed that the c -axis-oriented YMnO3/polycrystalline YMnO3 structure effectively relieved the stress.  相似文献   

19.
The conductivity and structure of 8-mol%-yttria-stabilized zirconia with additions of nickel oxide has been investigated, both in the as-prepared state and after reduction of NiO in hydrogen. During reduction at 1000°C, the conductivity decreases by 40%–50% and most of the NiO dissolved in the zirconia is exsolved in the form of nickel particles. This is accompanied by the formation of tetragonal zirconia precipitates of size 10–40 nm and by an increase in the lattice parameter. On reoxidation in air at 1000°C, the change in lattice parameter is partly reversed, but the conductivity shows no further changes.  相似文献   

20.
In situ neutron diffraction patterns were recorded from a 3Y-TZP sample during a complete loading–unloading cycle at compressive loads up to 2.3 GPa. The macroscopic stress–strain diagram shows elastic behavior to 1.7 GPa followed by volume conserving plastic strains of ∼1.6 × 103. There were no signs of t → m transformation in the neutron diffraction patterns, and intensity changes in the pattern show that the plasticity is due to ferroelastic switching of tetragonal zirconia crystals. Quantification of the degree of switching gives good agreement with the macroscopic strains. The ferroelastic switching is completely reversed by a process akin to creep relaxation on unloading. Lattice parameters, elastic constants, and structural changes as a function of load are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号