首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Retinoic acid receptor (RAR) gamma gene is expressed in the precartilaginous cells during chondrogenesis in mouse embryos, but the role of the gene products is still unclear. To examine the role during chondrogenesis, we isolated mesenchymal cells from the limb bud of mouse embryos and exposed them to antisense RAR gamma-1 oligodeoxynucleotide in micromass culture. The antisense oligodeoxynucleotide inhibited RAR gamma-1 protein expression and enhanced chondrogenesis in the exposed cells. These results suggest that the complex of RAR gamma-1 protein and its ligand RA acts as a suppressor of the chondrogenesis in the limb development.  相似文献   

2.
Retinoic acid (RA) up-regulates retinoic acid receptor beta (RAR beta) gene expression in a variety of cell lines. Whether up-regulation of the RAR beta gene reflects increased activity in a RAR beta-mediated biological process is unclear since RAR beta tends to heterodimerize with retinoid x receptor (RXR). In F9 teratocarcinoma cell line, RA-induced differentiation is accompanied by increased expression of the RAR beta, RXR alpha, and alpha-fetoprotein (AFP) genes. Previously, we have shown that the RA-mediated regulation of the AFP gene is through RXR alpha homodimers. In contrast to F9 cells, Hep3B is unique in that the AFP gene is down-regulated by RA in a manner reminiscent of down-regulation of AFP in postfetal liver. In this paper, we have examined the RA-mediated regulation of the RAR, RXR, peroxisome proliferator-activated receptor (PPAR), and AFP genes in Hep3B cells. RA induced the expression of RAR alpha, beta, and gamma mRNA in Hep3B cells. However, the expression of RXR alpha mRNA was down-regulated, and the levels of RXR beta and RXR gamma mRNA remained unchanged after RA treatment. In addition, the expression of the PPAR alpha, beta, and gamma genes was also unchanged. Gel retardation assays demonstrated that RA decreased the overall binding of nuclear receptors to the RA and PPAR response elements. By super-shift assays using specific anti-RAR and -RXR antibodies, RA treatment decreased the amount of RXR alpha while increasing the amount RAR beta bound to retinoic acid response element-DR1 (direct repeat with spacer of one nucleotide), indicating the levels of RAR/RXR heterodimer, RXR/RXR homodimer, or RAR/RAR homodimers were altered upon RA treatment of Hep3B cells. In addition, the RA-mediated reduction of RXR alpha in part results in down-regulation of the AFP gene. Our data indicates that RA exerts its effects by differentially regulating its own receptor gene expression.  相似文献   

3.
The role of RAR alpha 1 and RAR gamma 2 AF-1 and AF-2 activation functions and of their phosphorylation was investigated during RA-induced primitive and parietal differentiation of F9 cells. We found that: (i) primitive endodermal differentiation requires RAR gamma 2, whereas parietal endodermal differentiation requires both RAR gamma 2 and RAR alpha 1, and in all cases AF-1 and AF-2 must synergize; (ii) primitive endodermal differentiation requires the proline-directed kinase site of RAR gamma 2-AF-1, whereas parietal endodermal differentiation additionally requires that of RAR alpha 1-AF-1; (iii) the cAMP-induced parietal endodermal differentiation also requires the protein kinase A site of RAR alpha-AF-2, but not that of RAR gamma; and (iv) the AF-1-AF-2 synergism and AF-1 phosphorylation site requirements for RA-responsive gene induction are promoter context-dependent. Thus, AF-1 and AF-2 of distinct RARs exert specific cellular and molecular functions in a cell-autonomous system mimicking physiological situations, and their phosphorylation by kinases belonging to two main signalling pathways is required to enable RARs to transduce the RA signal during F9 cell differentiation.  相似文献   

4.
5.
6.
Two families of nuclear receptors for retinoic acid (RA) have been characterized. Members of the RAR family (types alpha, beta and gamma and their isoforms alpha 1, alpha 2, beta 1 to beta 4, and gamma 1 and gamma 2) are activated by most physiologically occurring retinoids (all-trans RA, 9-cis RA, 4oxo RA and 3,4 dihyroRA). In contrast, members of the RXR family (types alpha, beta and gamma and their isoforms) are activated by 9cis-RA only. In addition to the multiplicity of receptors, the complexity of retinoid signalling is further increased by the fact that, at least in vitro, RARs bind to their cognate response elements as heterodimers with RXRs. Moreover, RXRs can also bind, in vitro, to some DNA elements as homodimers, and are heterodimeric partners for other nuclear receptors, including TRs, VDR, PPARs and a number of orphan nuclear receptors. To evaluate the functions of the different RARs and RXRs types and isoforms, we have generated null mutant mice by targeted gene disruption in ES cells. As to the functions of RARs, we found that RAR alpha 1 and RAR gamma 2 null mutant mice are apparently normal. Mice deficient in RAR alpha or RAR gamma (i.e., all alpha or gamma isoforms disrupted) show aspects of the post-natal vitamin A deficiency (VAD) syndrome which can be cured or prevented by RA, including post-natal lethality, poor weight gain and male sterility. RAR beta 2 (and RAR beta) null mutants display a retrolenticular membrane which represents the most frequent defect of the fetal VAD syndrome. That these abnormalities were restricted to a small subset of the tissues normally expressing these receptors suggested that some degree of functional redundancy should exist in the RAR family. To test this hypothesis we then generated RAR double null mutants. RAR alpha beta, RAR alpha gamma and RAR beta gamma compound mutants exhibit all the malformations of the fetal VAD syndrome, thus demonstrating that RA is the vitamin A derivative which plays a crucial role at many different stages and in different structures during organogenesis. Interestingly, almost all the structures derived from mesenchymal neural crests cells (NCC) are affected in RAR compound mutants. As to the functions of RXRs, RXR gamma null mutants are viable, fertile and morphologically normal. In contrast, RXR alpha null fetuses display a thin ventricular wall and die in utero from cardiac failure. A myocardial hypoplasia has also been observed in some RAR compound mutants as well as in VAD fetuses. Thus, RXR alpha seems to act as an inhibitor of ventricular cardiocyte differentiation and/or as a positive regulator of their proliferation, and these functions might involve heterodimerization with RARs and activation by RA. RXR beta null mutants are viable but the males are sterile, most probably because of an abnormal lipid metabolism in the Sertoli cells. New abnormalities, absent in RXR alpha mutants, are generated in RXR alpha/RAR (alpha, beta or gamma) compound mutants. All these abnormalities are also seen in RAR double mutants as well as in VAD fetuses. In contrast, such manifestations of synergism are not observed between the RXR beta or RXR gamma and the RAR (alpha, beta or gamma) null mutations. These data strongly support the conclusion that RXR alpha/RAR heterodimers represent the main functional units of the RA signalling pathway during embryonic development. Moreover, since RXR gamma-/-/RXR beta-/-/RXR alpha +/-mutants are viable, a single allele of RXR alpha can perform most of the developmental RXR functions.  相似文献   

7.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RAR alpha and RXR alpha, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RAR alpha and RXR alpha. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 +/- 2%) being observed after 4 days of treatment with Ro 25, a RXR alpha specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 +/- 10%) occurred at 48 h with the RXR alpha-specific ligand. The RAR alpha-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXR alpha in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA.  相似文献   

8.
9.
10.
11.
12.
1. Extracellular ATP (EC50=146+/-57 microM) and various ATP analogues activated cyclic AMP production in undifferentiated HL-60 cells. 2. The order of agonist potency was: ATPgammaS (adenosine 5'-O-[3-thiotriphosphate]) > or = BzATP (2'&3'O-(4-benzoylbenzoyl)-adenosine-5'-triphosphate) > or = dATP > ATP. The following agonists (in order of effectiveness at 1 mM) were all less effective than ATP at concentrations up to 1 mM: beta,gamma methylene ATP > or = 2-methylthioATP > ADP > or = Ap4A (P1, P4-di(adenosine-5') tetraphosphate) > or = Adenosine > UTP. The poor response to UTP indicates that P2Y2 receptors are not responsible for ATP-dependent activation of adenylyl cyclase. 3. Several thiophosphorylated analogs of ATP were more potent activators of cyclic AMP production than ATP. Of these, ATPgammaS (EC50=30.4+/-6.9 microM) was a full agonist. However, adenosine 5'-O-[1-thiotriphosphate] (ATPalphaS; EC50=45+/-15 microM) and adenosine 5'-O-[2-thiodiphosphate] (ADPbetaS; EC50=33.3+/-5.0 microM) were partial agonists. 4. ADPbetaS (IC50=146+/-32 microM) and adenosine 5'-O-thiomonophosphate (AMPS; IC50=343+/-142 microM) inhibited cyclic AMP production by a submaximal concentration of ATP (100 microM). Consistent with its partial agonist activity, ADPbetaS was estimated to maximally suppress ATP-induced cyclic AMP production by about 65%. AMPS has not been previously reported to inhibit P2 receptors. 5. The broad spectrum P2 receptor antagonist, suramin (500 microM), abolished ATP-stimulated cyclic AMP production by HL-60 cells but the adenosine receptor antagonists xanthine amine congener (XAC; 20 microM) and 8-sulpho-phenyltheophylline (8-SPT; 100 microM) were without effect. 6. Extracellular ATP also activated protein kinase A (PK-A) consistent with previous findings that PK-A activation is involved in ATP-induced differentiation of HL-60 cells (Jiang et al., 1997). 7. Taken together, the data indicate the presence of a novel cyclic AMP-linked P2 receptor on undifferentiated HL-60 cells.  相似文献   

13.
Here we report that administration of retinoids can alter the outcome of an acute murine cytomegalovirus (MCMV) infection. We show that a crucial viral control element, the major immediate-early enhancer, can be activated by retinoic acid (RA) via multiple RA-responsive elements (DR2) that bind retinoid X receptor-retinoic acid receptor (RAR) heterodimers with apparent dissociation constants ranging from 15 to 33 nM. Viral growth is dramatically increased upon RA treatment of infected tissue culture cells. Using synthetic retinoid receptor-specific agonists and antagonists, we provide evidence that RAR activation in cells is required for mediating the response of MCMV to RA. Oral administration of RA to infected immunocompetent mice selectively exacerbates an infection by MCMV, while cotreatment with an RAR antagonist protects against the adverse effects of RA on MCMV infection. In conclusion, these chemical genetic experiments provide evidence that an RAR-mediated pathway can modulate in vitro and in vivo infections by MCMV.  相似文献   

14.
The response of 4 human ovarian carcinoma cell lines to retinoic acid was found to be related to the histological type and degree of differentiation of these tumor cells. The 2 serous cell lines NIHOVCAR3 and OVCCR1 were the most sensitive to the antiproliferative effect of RA. This inhibition was associated with morphological and biological changes that were indicative of differentiation. The undifferentiated IGROV1 cell line was not affected by RA. Since the effects of RA are thought to be mediated by nuclear retinoic acid receptors (RARs), the expression of RARs in human ovarian cancer cells was studied. RAR alpha was detected as mRNA species of 3.1 and 2.6 kb in all 4 cell lines. RAR beta was not detected in any of the cell lines, while RAR gamma (3 kb) was expressed in all of the ovarian cancer cells but at a very low level in the RA-resistant IGROV1 cells.  相似文献   

15.
Retinoic acid (RA) and its natural and synthetic analogs, the retinoids, regulate many biological processes, including development, differentiation, cell growth, morphogenesis, metabolism and homeostasis. Retinoid effects are mediated by specific nuclear receptors, the RARs and RXRs. Because of their ability to control cell growth and induce differentiation, retinoids are being examined for the prevention and treatment of several cancers. The majority of retinoids so far analyzed and available inhibit primarily cell proliferation and tumor progression but cannot eliminate cancer cells. In addition, the beneficial effects of the natural retinoids are undermined by undesirable side effects, possibly due to indiscriminate activation of all retinoid receptor subtypes and response pathways. Here, we show that a synthetic retinoid, CD-271, that activates selectively the RAR gamma subtype in a given context, shows increased anti-proliferative activity against certain carcinoma cells over all-trans-retinoic acid (tRA). CD-271 exhibits enhanced activity against DU-145 prostate adenocarcinoma cells through apoptosis-inducing activity, while tRA does not. The selective anti-cancer cell action appears to be receptor-mediated as an RAR antagonist reverses the inhibition. This profile was not seen with other selective retinoids, such as RAR alpha-selective agonists, anti-AP-1 compounds and a non-apoptosis inducing RAR gamma agonist. Our data point to a specific role for RAR gamma in controlling the growth of the prostate, consistent with previous RAR gamma gene knockout data. The identified retinoid represents a new class of compounds with potential for the treatment of prostate cancer.  相似文献   

16.
17.
18.
19.
Retinoids are important regulators of cell growth and differentiation in vitro and in vivo and they exert their biologic activities by binding to nuclear retinoic acid receptors (RARs; alpha, beta, and gamma) and retinoid X receptors (RXRs; alpha, beta, and gamma). All-trans retinoic acid (RA) induces complete remission in patients with acute promyelocytic leukemia (APL) presumably by binding directly to RAR alpha of APL cells. Leukemic blasts from APL patients initially responsive to RA can become resistant to the agent. HL-60 myeloblasts cultured with RA have developed mutations of the ligand-binding region of RAR alpha and have become resistant to RA. Furthermore, insertion of an RAR alpha with an alteration in the ligand-binding region into normal murine bone marrow cells can result in growth factor-dependent immortalization of the early hematopoietic cells. To determine if alterations of the ligand binding domain of RAR alpha might be involved in several malignant hematologic disorders, the mutational status of this region (exons 7, 8, and 9) was examined in 118 samples that included a variety of cell lines and fresh cells from patients with myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML), including 20 APL patients, 5 of whom were resistant to RA and 1 who was refractory to RA at diagnosis, using polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analysis and DNA sequencing. In addition, 7 of the 20 APLs were studied for alterations of the other coding exons of the gene (exons 2 through 6). No mutations of RAR alpha were detected. Although the sensitivity of PCR-SSCP analysis is less than 100%, these findings suggest that alterations of RAR alpha gene are rare and therefore other mechanisms must be involved in the onset of resistance to retinoids and in the lack of differentiation in disorders of the myeloid lineage.  相似文献   

20.
In the present work, we have investigated the role of all-trans-retinoic acid (all-trans RA), and several other natural and synthetic retinoids, in the development of adrenergic cells in quail neural crest cultures. Dose response studies using all-trans RA and 13-cis RA revealed a dose-dependent increase in the number of adrenergic cells in neural crest cultures. Similar dose response studies using RA isomers and other natural retinoids did not result in the same increases. In order to determine the receptor mediating the effects of all-trans RA in the neural crest, we tested several synthetic analogs which specifically bind to a particular RA receptor (RAR) subtype. We found that the compound AM 580, which activates the RAR-alpha, produced an increase in adrenergic cells similar to that seen with all-trans RA. The compound TTNPB, which activates all RAR subtypes, also resulted in an increase in adrenergic cells. We conclude that the increase in adrenergic cells seen with all-trans RA is mediated by RAR-alpha and possibly RAR-beta. To further define the actions of all-trans RA on the neural crest we incubated cultures with 5-bromo-2'-deoxyuridine (BrdU) to determine whether all-trans RA could affect the rate of proliferation. The results show that while all-trans RA did not increase the fraction of cells incorporating BrdU into their nuclei at early time points (24 h), it did increase BrdU incorporation by tyrosine hydroxylase (TH) positive cells at 5 days in culture. These findings demonstrate that the increase in adrenergic cells seen with all-trans RA in neural crest cultures is likely due to an increase in the proliferation of cells already expressing TH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号