首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

2.
This work presents numerical simulation results for molten nickel and zirconia (YZS) droplets impacting on different microscale-patterned surfaces of silicon. The numerical simulation clearly showed the effect of surface roughness and solidification on the shape of the final splat, as well as the pore creation beneath the sprayed material. Simulations were performed using computational fluid dynamic software, SimDrop. The code uses a three-dimensional finite-difference algorithm solving the full Navier-Stokes equation, including heat transfer and phase change. A volume of fluid (VOF) tracking algorithm is used to track the droplet-free surface. Thermal contact resistance at the droplet-substrate interface is also included in the model. Specific attention is paid to the simulation of droplet impact under plasma spraying conditions. Droplet sizes ranged from 15 to 60 microns with initial velocities of 70-250 m/s. Substrate surfaces were patterned with regular arrays of cubes 1-3 μm high, spaced either 1 μm or 5 μm from each other. Different splat morphologies produced by simulations are compared with those obtained from the experiment conducted under the same impact and surface conditions. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

3.
In plasma spraying, the arc-root fluctuations, modifying the length and characteristics of the plasma jet, have an important influence on particle thermal treatment. These voltage fluctuations are strongly linked to the thickness of the cold boundary layer (CBL), surrounding the arc column. This thickness depends on the plasma spray parameters (composition and plasma forming gas mass flow rate, arc current, etc.) and the plasma torch design (anode-nozzle internal diameter and shape, etc.). In order to determine the influence of these different spray parameters on the CBL properties and voltage fluctuations, experiments were performed with two different plasma torches from Sulzer Metco. The first one is a PTF4 torch with a cylindrical anode-nozzle, working with Ar-H2 plasma gas mixtures and the second one is a 3MB torch with either a conical or a cylindrical anode-nozzle, working with N2-H2 plasma gas mixtures. Moreover, arc voltage fluctuations influence on particle thermal treatment was studied through the measurements of transient temperature and velocity of particles, issued from an yttria partially stabilized zirconia powder with a size distribution between 5 and 25 μm. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

4.
Three-dimensional molecular dynamics simulation was conducted to clarify at an atomic level the flattening process of a high-temperature droplet impacting a substrate at high speed. The droplet and the substrate were assumed to consist of pure aluminum, and the Morse potential was postulated between a pair of aluminum atoms. In this report, the influence of the impact parameters such as the droplet velocity and the droplet diameter on flattening behavior were analyzed. As a result, the following representative conclusions were obtained: (a) the flattening ratio increases in proportion to the droplet velocity and the droplet diameter; (b) the flattening ratio for nanosized droplet can be reorganized by the same dimensionless parameters of the proper physical properties, such as the viscosity and the surface tension, as those used in the macroscopic flattening process. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

5.
Plasma spraying using liquid feedstock makes it possible to produce thin coatings (<100 μm) with more refined microstructures than in conventional plasma spraying. However, the low density of the feedstock droplets makes them very sensitive to the instantaneous characteristics of the fluctuating plasma jet at the location where they are injected. In this study, the interactions between the fluctuating plasma jet and droplets are explored by using numerical simulations. The computations are based on a three-dimensional and time-dependent model of the plasma jet that couples the dynamic behaviour of the arc inside the torch and the plasma jet issuing from the plasma torch. The turbulence that develops in the jet flow issuing in air is modeled by a large Eddy simulation model that computes the largest structures of the flow which carry most of the energy and momentum. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

6.
Direct current Suspension Plasma Spraying (SPS) allows depositing finely structured coatings. This article presents an analysis of the influence of plasma instabilities on the yttria-stabilized suspension drops fragmentation. A particular attention is paid to the treatment of suspension jet or drops according to the importance of voltage fluctuations (linked to those of the arc root) and depending on the different spray parameters such as the plasma forming gas mixture composition and mass flow rate and the suspension momentum. By observing the suspension drops injection with a fast shutter camera and a laser flash sheet triggered by a defined transient voltage level of the plasma torch, the influence of plasma fluctuations on jet or drops fragmentation is studied through the deviation and dispersion trajectories of droplets within the plasma jet. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

7.
Use of a comprehensive validated computer model of a thermal spray process enables an ability to improve, optimize, and fine-tune the performance of that thermal spray process. A validated model of the Sulzer Metco TriplexPro™ 200 plasma gun has been used to improve the performance of the actual gun in terms of enhancing gas flow dynamics, thermal management, and overall performance in terms of a robust design. Internal changes to the gun geometry using the model have extended the life of the hardware. In addition the model has permitted the investigation of the fundamental operation of the gun, specific to the behavior and path of the arcs, as well as the ability to operate the plasma gun, under simulation, in operating regimes that currently cannot be supported by the physical hardware. The model has been run at gas pressures above 1.4 Mpa and/or voltages above 300 V that currently cannot be obtained with the physical hardware due to equipment limitations to evaluate the potential to extend the operating window of the Sulzer Metco TriplexPro™ 200 gun beyond current levels in terms of particle velocity and temperature. The end result is an improved process tool for applying thermal spray coatings ranging from ceramics applied at high particle temperature and low particle velocities to carbides and alloys applied at lower temperatures and higher velocities. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

8.
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

9.
The hybrid spray process that combines arc spray with a high-velocity oxyfuel (HVOF)/plasma jet has recently demonstrated its effectiveness in deposition of functionally gradient coatings. This approach aims at exploiting the combined attributes of the arc-spray technique and the HVOF/air plasma spraying (APS) technique. This paper presents high-speed visualization and plume characterization of an arc/HVOF hybrid spray gun as well as a twin-wire arc-spray gun. The physics of atomization in the hybrid spray process is examined using a high-speed camera. A DPV/CPS-2000 (Tecnar, St-Bruno, QC, Canada) particle diagnostics sensor is used to measure particle velocity, temperature, size, and distribution. The influence of feed material, arc parameters, and HVOF parameters on the particle characteristics is presented. Differences in the in-flight characteristics between the hybrid and the twin-wire arc process are discussed aided by the observed atomization phenomena with the high-speed camera. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

10.
Wear at the electrode surfaces of a one-cathode plasma torch changes the characteristic fluctuation pattern of the plasma jet. This affects the trajectory of the particles injected into the plasma jet in a non-controllable way, which degrades the reproducibility of the process. Time-based voltage measurements and Fourier analysis were carried out on a one-cathode F4 torch at different wear conditions to determine the evolution of wear dependant characteristics. A significant correlation is observed between increasing torch wear and decreasing voltage roughness and high frequency noise. Furthermore, by means of particle diagnostic systems, the change in the particle velocity and temperature has been measured. The variations of the particle characteristics are significant and thus an influence on the sprayed coating microstructure is to be expected. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

11.
Composite powder was prepared using primary nanoTiO2 powder and polyethylene glycol (PEG). The nanoTiO2 coating was deposited through vacuum cold spray using both the composite powder and the primary nanopowder. The influence of annealing on the coating adhesion and photocatalytic activity was investigated. The coating adhesion was evaluated through erosion test by water jet. The photocatalytic performance of the coatings was evaluated through photodegradation of phenol in water. Results showed that annealing of the coating at a temperature from 450 to 500 °C yielded both higher activity and better adhesion. The adhesion of the coating deposited using the composite powder was better than that using the primary nanoTiO2 powder. It was found that the TiO2 coating, resulting from the composite powder, presented much higher activity than that deposited with the primary nanopowder. The better activity is attributed to the existence of large pores resulting from the stacking of composite powder, which benefits the reactants’ transportation through the porous coating. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

12.
Dependence of the Stabilization of α-Alumina on the Spray Process   总被引:1,自引:0,他引:1  
A phase change from α-alumina (corundum) in the feedstock powder to predominantly other alumina phases, such as γ-alumina in the coating normally takes place, as a result of the spray process. It is expected that the prevention of this phase transformation will significantly improve the mechanical, electrical, and other properties of thermally sprayed alumina coatings. The results regarding the possibility of stabilization of α-alumina through addition of chromia published in the literature are ambiguous. In this work, stabilization using different spray processes (water-stabilized plasma (WSP), gas-stabilized plasma (APS), and high-velocity oxy-fuel spray (HVOF)) was studied. Mechanical mixtures of alumina and chromia were used, as were prealloyed powders consisting of solid solutions. The investigations focused on mechanical mixtures with both APS and WSP and on prealloyed powders with WSP. The coatings were studied by x-ray diffraction, including Rietveld analysis, and analysis of the lattice parameters. Microstructures were investigated by optical microscopy using metallographic cross-sections. It was shown that in the case of the mechanically mixed powders, the stabilization predominantly depends on the applied spray process. The stabilization of the α phase by use of the WSP process starting from mechanical mixtures was confirmed. It appears that stabilization exhibits a complex dependence on the spray process, the process parameters (in particular the thermal history), the nature of the powder (mechanically mixed or prealloyed), and the chromia content. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

13.
Ideally, plasma spraying of metal powders must take place within a narrow processing “window” where the particles become fully molten before they hit the substrate, but are not overheated to the point that substantial volatilization occurs. Metal evaporation in flight results in a decrease in the deposition efficiency. In addiiton, the emission of vapors leads to the formation of metal and oxide fumes that are undesirable from the viewpoints of both resource conservation and environmental control. This study examines the vaporization and fume formation in the plasma spraying of iron powders of different size ranges. The experimental part involves the determination of the population (number density) of metal atoms at different cross sections along the trajectory of the plasma jet, and the collection of the submicronic particles resulting from vapor condensation. The experimental results are compared with the projections of a mathematical model that computes the gas/particle velocity and temperature fields within the jet envelope, projects the rate of heat/mass transfer at the surface of individual particles, and determines the rate of volatilization that results in the formation of metal and metal oxide fumes. This paper was presented at the International Thermal Spray Conference sponsored by the ASM Thermal Spray Society, the DVS-German Welding Society and the IIW International Institute of Welding, May 8–11, 2000 in Montreal, Canada.  相似文献   

14.
The effect of particle size distribution on the degradation behavior of plasma sprayed CoNi- and CoCrAlY coatings during isothermal oxidation was investigated, in terms of the oxygen content, porosity, surface roughness, and oxide scale formation. The results show that the degradation of both coatings was considerably influenced by the starting particle size distribution. It also shows that in the as-sprayed vacuum plasma spray (VPS) coatings the oxygen content on the coating surface increased significantly with decreased average particle size. But after thermal exposure, the difference of the oxygen contents between the coatings with different particle size was decreased. The powder with various particle size resulted in low porosity inside the coatings during the deposition process. The surface roughness of the coatings increased with increased particle size. The small particles produced a relatively smooth surface, and the oxide growth in the coating deposited by small particle was slower than that in the large particle coating. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

15.
Numerical simulations of gas/particle flows of cold spray are performed for N2 and He, respectively, to investigate the usefulness of the two material-independent combination parameters derived from the equations of particle motion and temperature. The first combination parameter is the particle-diameter multiplied by the material density, which governs the particle velocity. The second one is the squared particle-diameter multiplied by the material density and specific heat, which affects the particle temperature. In the numerical simulation, the materials of the spray particle selected are WC-12Co, Cu and Ti. The numerical results show that the maximum impact velocity of particle is obtained, when the first combination parameter takes specific value regardless of the material type. Furthermore, it is shown that the particle diameter and its temperature corresponding to the maximum impact velocity can be graphically estimated by using the two combination parameters for any powder-materials normally used for the thermal spray. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

16.
Thermal barrier coatings were produced using both Ar and N2 as the primary plasma gas. Various aspects of the process and the coatings were investigated. It was found that higher in-flight particle temperatures could be produced using N2, but particle velocities were lower. Deposition efficiencies could be increased by a factor of two by using N2 as compared to Ar. Coatings having similar values of porosity, hardness, Young’s modulus, and thermal diffusivity could be produced using the two primary gases. The coatings exhibited similar changes (increased hardness, stiffness, and thermal diffusivity) when heat-treated at 1400 °C. However, the N2-processed coatings tended to have lower values of Young’s modulus and thermal diffusivity following such treatment. The results point to the potential advantage, in terms of reduced powder consumption and increased production rate, of using N2 as compared to Ar as the primary plasma gas for TBC deposition. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

17.
Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties   总被引:3,自引:0,他引:3  
Coating build-up mechanisms and properties of cold-sprayed aluminum-alumina cermets were investigated using two spherical aluminum powders having average diameters of 36 and 81 μm. Those powders were blended with alumina at several concentrations. Coatings were produced using a commercial low-pressure cold spray system. Powders and coatings were characterized by electronic microscopy and microhardness measurements. In-flight particle velocities were monitored for all powders. The deposition efficiency was measured for all experimental conditions. Coating performance and properties were investigated by performing bond strength test, abrasion test, and corrosion tests, namely, salt spray and alternated immersion in saltwater tests. These coating properties were correlated to the alumina fraction either in the starting powder or in the coating. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

18.
The effect of powder injecting location of the plasma spraying on spraying properties was studied. Three different powder-injecting methods were applied in the experiment. In the first method, the particles were axially injected into the plasma flow from the cathode tip. In the second method, the particles were radially injected into the plasma flow just downstream of the anode arc root inside the anode nozzle. In the third method, the particles were radially injected into the plasma jet at the nozzle exit. The alumina particles with a mean diameter of 20 μm were used to deposit coatings. Spraying properties, such as the deposition efficiency, the melting rate of the powder particles, and the coating quality were investigated. The results show that the spraying with axial particle injecting can heat and melt the powder particles more effectively, produce coatings with better quality, and have higher deposition efficiency. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

19.
This paper presents a CFD (Computational Fluid Dynamic) study and experimental results concerning a rotating twin wire-arc spray process for the production of coatings on engine cylinder bores. In this process, the wire atomization is performed using a gas injection coaxially with the cylinder axis. The thermal spray tool is equipped with a deviation head rotating around the cylinder axis and allowing deflecting the droplet spray perpendicularly to the cylinder surface. The initial deviation head was found to be not sufficiently efficient so that a new deviation head incorporating an inclined slot was designed and used. Both CFD results and experiments showed that this new deviation head is more efficient. Moreover, it allowed increasing the coating bond-strength up to the specifications imposed by PSA Peugeot-Citroen. The present article shows that the wire-arc spray technology may replace efficiently the Atmospheric Plasma Spray (APS) for the thermal spray of coatings on engine cylinder bores. Moreover, it shows how CFD may help in solving industrial problems. In particular, the FLUENT CFD code was used in order to perform improvements of the deviation head design. This article was originally published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, 2007.  相似文献   

20.
In conventional plasma spray of SOFC components, the large NiO and YSZ particles used, about 50-150 microns for high porosity coating, reduce the density of three-phase sites for electrode reaction. In this article, the SPPS process was used to synthesize and deposit Ni-YSZ anodes. The results show that several process parameters have significant effects on the microstructure and phase composition of the deposited material. The deposits were composed of tower-like, irregularly shaped agglomerates and smooth surface deposits. The sizes of the agglomerates increase with the decrease of the plasma-torch power and most are not completely molten during the impact. After heat treatment to reduce the NiO present in the as deposited coatings, the coatings were found to contain spherical YSZ particles about 0.5 μm in diameter distributed in a continuous Ni matrix, which is verified by both SEM observation and electrical resistance measurement. The coatings have 30-50% porosity. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号