首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
介绍了一种串联电容式RF MEMS开关的设计与制造。所设计的串联电容式RF MEMS开关利用薄膜淀积中产生的内应力使MEMS桥膜向上发生翘曲,从而提高所设计的开关的隔离度,克服了串联电容式RF MEMS开关通常只有在1GHz以下才能获得较高隔离度的缺点。其工艺与并联电容式RF MEMS开关完全相同,解决了并联电容式RF MEMS开关不能应用于低频段(<10GHz)的问题。其插入损耗为-0.88dB@3GHz,在6GHz以上,插入损耗为-0.5dB;隔离度为-33.5dB@900MHz、-24dB@3GH和-20dB@5GHz,适合于3~5GHz频段的应用。  相似文献   

2.
A novel packaging structure which is performed using wafer level micropackaging on the thin silicon substrate as the distributed RF MEMS phase shifters wafer with vertical feedthrough is presented. The influences of proposed structure on RF performances of distributed RF MEMS phase shifters are investigated using microwave studio (CST). Simulation results show that the insertion loss (S21) and return loss (S11) of packaged MEMS phase shifters are −0.4–1.84 dB and under −10 dB at 1–50 GHz, respectively. Especially, the phase shifts have well linear relation at the range 1–48 GHz. At the same time, this indicated that the proposed pacakaging structure for the RF MEMS phase shifter can provide the maximum amount of linear phase shift with the minimum amount of insertion loss and return loss of less than −10 dB.  相似文献   

3.
A new circuit topology for the design of a single balanced second‐order subharmonic mixer (SHM) is proposed. In the proposed topology, it is not necessary for the radio frequency (RF) and local oscillator (LO) signal to be within 15% frequency difference. Thus, the limitation of a conventional rat‐race mixer has been alleviated. Moreover, it shows very low conversion loss, high LO‐to‐RF, LO to intermediate frequency (IF), and 2LO‐to‐RF port isolations. The measured minimum down conversion loss is 5.8 dB at 13 GHz and remains below 7.65 dB over the 2 GHz RF operational band 12‐14 GHz for a fixed IF of 550 MHz. Measured LO‐to‐RF and LO‐to‐IF port isolations are better than ?40 dB over the entire operational band. The 2LO‐to‐RF isolation is more than ?62 dB which is extremely necessary for a second harmonic mixer where 2LO and RF frequency are close to each other. The input 1‐dB compression point is measured to be ?1 dBm.  相似文献   

4.
Air-suspension of transmission-line structures using microelectromechanical systems (MEMS) technology provides the effective means to suppress substrate losses for radio-frequency (RF) signals. However, heating of these lines augmented by skin effects can be a major concern for RF MEMS reliability. To understand this phenomenon, a thermal energy transport model is developed in a simple analytical form. The model accounts for skin effects that cause Joule heating to be localized near the surface of the RF transmission line. Here, the model is validated through experimental data by measuring the temperature rise in an air-suspended MEMS coplanar waveguide (CPW). For this measurement, a new experimental methodology is also developed allowing direct current (dc) electrical resistance thermometry to be adopted in an RF setup. The modeling and experimental work presented in this paper allow us to provide design rules for preventing thermal and structural failures unique to the RF operation of suspended MEMS transmission-line components. For example, increasing the thickness from 1 to 3 mum for a typical transmission line design enhances power handling from 5 to 125 W at 20 GHz, 3.3 to 80 W at 50 GHz, and 2.3 to 56 W at 100 GHz (a 25-fold increase in RF power handling)  相似文献   

5.
A low-voltage lateral MEMS switch with high RF performance   总被引:3,自引:0,他引:3  
MEMS switches are one of the most promising future micromachined products that have attracted numerous research efforts in recent years. The majority of MEMS switches reported to date employ electrostatic actuation, which requires large actuation voltages. Few are lateral relays and those often require nonstandard post process, and none of them is intended for high-frequency applications. We have developed an electrothermally actuated lateral-contact microrelay for RF applications. It is designed and fabricated on both low-resistivity and high-resistivity silicon substrate using surface micromachining techniques. The microrelay utilizing the parallel six-beam actuator requires an actuation voltage of 2.5-3.5 V. Time response is measured to be 300 /spl mu/s and maximum operating frequency is 2.1 kHz. The RF signal line has a current handling capability of approximately 50 mA. The microrelay's power consumption is in the range of 60-100 mW. The lateral contact mechanism of the microrelay provides a high RF performance. The microrelay has an off-state isolation of -20 dB at 40 GHz and an insertion loss of -0.1 dB up to 50 GHz. The simplicity of this 4-mask fabrication process enables the possibility of integrating the microrelay with other passive RF MEMS components.  相似文献   

6.
Distributed MEMS phase shifters using CMOS-grade low-resistivity silicon have been successfully developed. Kapton films were utilized as dielectric layers to reduce RF signal attenuation in the lossy silicon substrate. The scattering parameters were evaluated from DC to 26 GHz. The phase shifting reaches 43° and insertion losses are less than 1.4 dB. The manufacturing process is simple and compatible with CMOS and post CMOS processes.  相似文献   

7.
This paper details single-crystalline silicon (SCS) direct contact radio frequency microelectromechanical systems (RF MEMS) switch designed and fabricated using an SiOG (silicon-on-glass) substrate, so as to obtain higher fabrication and performance uniformity compared with a conventional metal switch. The mechanical and electrical performances of the fabricated silicon switch have been tested. In comparison with a conventional metallic MEMS switch, we can obtain higher productivity and uniformity by using SCS, because it has very low stresses and superior thermal characteristics as a structural material of the switch. Also, by using the SiOG substrate instead of an SOI substrate, fabrication cost can be significantly reduced. The proposed switch is fabricated on a coplanar waveguide (CPW) and actuated by electrostatic force. The designed chip size is 1.05 mm/spl times/0.72 mm. Measured pull-in voltage and actuation voltage were 19 V and 26 V, respectively. Eighteen identical switches taken randomly throughout the wafer showed average and standard deviation of the measured pull-in voltage of 19.1 and 1.5 V, respectively. The RF characteristics of the fabricated switch from dc to 30 GHz have been measured. The isolation and insertion loss measured on the four identical samples were -38 to -39 dB and -0.18 to -0.2 dB at 2 GHz, respectively. Forming damping holes on the upper electrode leads to a relatively fast switching speed. Measured ON and OFF time were 25 and 13 /spl mu/s, respectively. In the switch OFF state, self-actuation does not happen up to the input power of 34 dBm. The measured holding power of the fabricated switch was 31 dBm. Stiction problem was not observed after 10/sup 8/ cycles of repeated actuation, but the contact resistance varied about 0.5-1 /spl Omega/ from the initial value.  相似文献   

8.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

9.
In this article, a wide‐band circularly polarized slot antenna array with reconfigurable feed‐network for WiMAX, C‐Band, and ITU‐R applications is proposed. Different novel methods are used in proposed array to improve antenna features such as impedance matching, 3 dB axial‐ratio bandwidth (ARBW), gain, and destructive coupling effects. Miniaturized dual‐feed square slot antenna, with one attached L‐shaped strip and a pair of T‐shaped strip at ground surface for improving impedance matching and circular polarization (CP) purity, is presented. For further enhancement of CP attributes, reconfigurable sequentially rotated feed network is utilized to obtain wider 3 dB ARBW. Furthermore reconfigurable property of network gives controlling Right and Left handed CPs, respectively. Finally, a special form of Electromagnetic Band gap structure is employed on top layer of substrate that provides high isolation between radiating elements and array feed network to enhance overall performance of antenna. The measured results depict 3 dB ARBW from 4.6 to 7.2 GHz, impedance bandwidth from 3.3 to 8.8 GHz for VWSR<2, and peak gain of 10 dBi at 6 GHz. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:825–833, 2015.  相似文献   

10.
In this article, an RF MEMS capacitive series switch fabricated using printed circuit processing techniques is discussed. Design, modeling, fabrication, and characterization of the CPW series switch are presented. An example CPW series capacitive switch with insertion loss less than 0.5 dB in the frequency range of 13–18 GHz and isolation better than 10 dB up to 18 GHz is discussed. The switch provides a minimum insertion loss of about 0.1 dB at the self‐resonance frequency of 16 GHz and a maximum isolation of about 42 dB at 1 GHz. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

11.
A microstrip multiplexer for broadband system applications from 10 to 21 GHz has been developed. The multiplexer consists of four microstrip bandpass filters with center passband frequencies at 10, 12, 19, and 21 GHz. The multiplexer efficiently suppresses the parasitic passbands of the 10‐ and 12‐GHz filters and balances the phase relationship among the multiplexer channels. A method for improving the parasitic passband rejection has been devised. Measured results show that parasitic passband rejection is more than 38 dB. Measured insertion losses are 1.81, 1.90, 2.88, and 2.51 dB at 10.3, 12.25, 19.4, and 21.285 GHz, respectively. Measured out‐of‐band isolation is more than 32 dB at all these frequencies. This multiplexer has applications in communication transceiver systems with dual‐channel receiver (12 and 21 GHz) and dual‐channel transmitter (10 and 19 GHz). © 2001 John Wiley & Sons, Inc. Int J RF and Microwave CAE 11: 48–54, 2001.  相似文献   

12.
In this article, an improved approach is presented for designing Electromagnetic Bandgap (EBG) reflectors for slot antennas by using a waveguide aperture source in simulating reflection phase test. In this manner the nonplanar nature of the near field at the location of the source, that is, antenna, as well as its loading effect on the reflector are incorporated in the design of a mushroom‐type EBG structure operating at 5.3 GHz. This EBG design performs as an efficient reflector in normal wave incidence while suppressing the substrate‐bound modes propagating in the azimuthal directions. The designed EBG reflector is employed in several two‐slot‐antenna structures to establish excellent antenna isolation of at least 25 dB and single antenna gain of 5 dB at 5.3 GHz in each scenario. To further reduce coupling, the antennas are reoriented to benefit from polarization mismatch and radiation pattern nulls, resulting in isolation values of above 40 dB for antennas spaced one wavelength apart. The two‐antenna structures are also characterized for MIMO performance in a reverberation chamber and demonstrate an impressive diversity gain of better than 8 dB in a rich multipath environment. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:289–297, 2014.  相似文献   

13.
A novel torsional RF MEMS capacitive switch design on silicon substrate is presented. The optimized switch topology such as reduction in up-state capacitance results in insertion loss better than ?0.1 dB till 20 GHz. Off to on state capacitance ratio is also improved by 18 fold and isolation is better than ?43 dB at 9.5 GHz. The achieved on state return loss is ?38 dB as compared to ?21 dB at 9.5 GHz. An optimized reduction in contact area and use of floating metal layer increases the switching speed from 56 to 46 μsec. It also increases the switch reliability by alleviating the stiction.  相似文献   

14.
Two wideband tapered slot antennas are designed, fabricated, and tested. The first antenna, which is fabricated on a high dielectric constant substrate (?r = 10.2), shows a measured return loss of better than 10 dB from 1.6 to 12.4 GHz (7.7:1 bandwidth), and an antenna gain varying from 3.6 to 7.8 dBi. The second antenna is built on a low dielectric constant substrate (?r = 2.2), and demonstrates return loss of better than 10 dB from 1.8 to 15.2 GHz (8.4:1 bandwidth). The second antenna also has improved antenna gain, from 5 to 15.6 dBi, and is used to build a wideband 1 × 4 H‐plane phased array with a total gain of 9–17 dBi and a beam steering angle of ±15° from 3 to 12 GHz. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

15.
The design, modeling, and optimization of a novel, thermally actuated CMOS‐MEMS switch are presented in this article. This series capacitive MEMS switch solves the substrate loss and down‐state capacitance degradation problems commonly plaguing MEMS switches. The switch uses finger structure for capacitive coupling. The vertical bending characteristic of bimorph cantilever beams under different temperatures is utilized to turn the switch on and off. A set of electrical, mechanical, and thermal models is established, and cross‐domain electro‐thermo‐mechanical simulations are performed to optimize the design parameters of the switch. The fabrication of the switch is completely CMOS‐process compatible. The design is fabricated using the AMI 0.6 μm CMOS process and a maskless reactive‐ion etching process. The measured results show the insertion loss and isolation are 1.67 and 33 dB, respectively, at 5.4 GHz, and 0.36 and 23 dB at 10 GHz. The actuation voltage is 25 V and the power consumption is 480 mW. This switch has a vast number of applications in the RF/microwave field, such as configurable voltage control oscillators, filters, and configurable matching networks. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

16.
RF MEMS membrane switches on GaAs substrates for X-band applications   总被引:2,自引:0,他引:2  
Micromechanical switches have demonstrated great potential at microwave frequencies. For low-loss applications at microwave frequencies, it is important to use high-resistivity substrates. This paper presents the design and fabrication of the shunt-capacitive MEMS switch on GaAs substrates. Analytical mechanical and impedance models of the membrane switch are given, and the results are confirmed by using the ANSYS and HFSS software, respectively. A surface micromachining process, which is compatible with the conventional millimeter-wave integrated circuits (MMICs) fabrication technology, was adopted to fabricate the RF switch on GaAs substrates. Its S-parameter was taken using a HP8510C vector network analyzer and a Cascade Probe station. The measured insertion loss of the switch and its associated transmission line is less than 0.25 dB from 1 to 25.6 GHz, and the isolation may reach -42 dB at its self-resonate frequency of 24.5 GHz. The actuation voltage is about 17 V. The switch has demonstrated lifetimes as long as 5/spl times/10/sup 6/ cycles. The wideband high performance in isolation and insertion loss offers the monolithic integration capability with GaAs MMICs.  相似文献   

17.
This article presents a novel circularly polarized sequentially rotated slot antenna array (CPSSAA) designed to operate at a frequency of 5.5 GHz. This antenna is suitable for communication applications such as WLAN/WiMAX. Method of feeding is based on sequential rotation with seven quarter‐wavelength transformers. In this case, the elements with 200 Ω impedance could be replaced by other elements with different input impedance. Reducing the elements input impedance, maximum power can be transferred to the elements. Because the lower losses in transmission line occur in presence of lower impedance, the 3 dB axial‐ratio bandwidth of the CPSSAA extends to ~1.3 GHz. The CPSSAA was designed to operate over the frequency range between 4.5 and 6.4 GHz corresponding to an impedance bandwidth of 34.86% for VSWR < 2. Acceptable agreement between the simulation and measured results validates the proposed design. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:358–363, 2015.  相似文献   

18.
A novel lateral RF MEMS capacitive switch was reported in this paper. This switch employed parylene as the dielectric material, taking advantages of its low temperature deposition and conformal coating. The low resistivity single crystalline silicon served as the material of the mechanical structures. The switch was fabricated by bulk micromachining processes with only two lithographic masks and a shadow mask. The dynamical response, parylene insulation performance, and RF performances of the fabricated switch were characterized, respectively. The switching time from the open state to the close state was 105 μs at a loaded voltage of 78 V, while 15.6 μs from the close state to the open state. The isolation was better than 15 dB from 20 to 40 GHz, and the maximal isolation was 23.5 dB at 25 GHz; while the insertion loss was below 1.4 dB at 25 GHz, when bonding wires connected the ground lines. These results verify that the parylene is a good candidate material to act as sidewall dielectric to realize the lateral capacitive switch.  相似文献   

19.
北斗卫星导航系统由我国自主研发,其研制目的是为了在日益严峻的世界环境下巩固我国的军事实力。北斗射频接收芯片是北斗卫星导航系统中整个地面端设备的核心,因此,关于射频接收机芯片的研发工作具有十分重要且实际的意义。文中在基于窄带低噪声放大器理论的基础上,采用TSMC0.18μmCMOS工艺设计了一种应用于北斗通信系统中的低噪声放大器。放大器采用改进的单转双电路结构,并通过缓冲级电路对差分信号的幅度和相位偏差进行了有效的校正。实验结果表明该电路在2.45GHz-2.55GHz频带内输入回波损耗小于-28dB,噪声系数小于1.1dB,功率增益大于15dB,电压增益高于32dB。  相似文献   

20.
一种0.8GHz~6GHz CMOS超宽带低噪声放大器设计   总被引:1,自引:0,他引:1  
给出了一个针对0.8GHz~6GHz 的超宽带低噪声放大器 UWB LNA(ultra-wideband low noiseamplifier)设计。设计采用0.18μm RF CMOS 工艺完成。在0.8GHz~6GHz 的频段内,放大器增益 S21达到了17.6dB~13.6dB。输入、输出均实现良好的阻抗匹配,S11、S22均低于-10dB。噪声系数(NF)为2.7dB~4.6dB。在1.8V 工作电压下放大器的直流功耗约为12mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号