首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scuffing is a major problem that limits the life and reliability of sliding tribo-components. When scuffing occurs, friction force rises sharply and is accompanied by an increase in noise and vibration; severe wear and plastic deformation also occur on the damaged surface. Attempts have been made over the years to combat scuffing by enhancing the surface properties of the machine elements, and by methods involving lubricant formulation and coating application.

In this study, the authors evaluated the scuffing performance of an amorphous, near-frictionless carbon (NFC) coating that provides super-low friction under dry sliding conditions. The test configuration used a ball-on-flat contact in reciprocating sliding. The coating was deposited on HI3 steel. An uncoated 52100 steel ball was tested against various coated flats in room air. Compared to uncoated surfaces, the carbon coating increased the scuffing resistance of the sliding surfaces by two orders of magnitude. Microscopic analysis shows that scuffing occurred on coaled surfaces only if the coating had been completely removed. It appears that depending on coating type, the authors observed that coating failure occurs before scuffing failure by one of two distinct mechanisms: the coating failed in a brittle manner and by spoiling, or by gradual wear.  相似文献   

2.
3.
The use of low friction coatings like amorphous carbon or metal-doped carbon coatings on machine elements is constantly increasing. Most often, a surface treatment, e.g. grinding and polishing or honing, is required for optimal performance of the coated machine element. This can be time consuming and costly.In this study, the effect of surface roughness on friction and sliding wear of two different coatings, one tungsten containing and one chromium containing coating, were examined using a ball-on-disc test. Ball bearing steel plates were grinded to different surface roughnesses and coated with the two different coatings.The friction was found to depend on surface roughness where the rougher surfaces gave higher friction coefficients. The wear rate for the a-C:W coating was found to be independent of the roughness, whereas the roughness had a strong influence on the wear rate for the a-C:Cr coating. This could partly be explained by a difference in wear mechanism, where fatigue wear was observed for the a-C:Cr coating but not for the a-C:W coating.  相似文献   

4.
The aim of the present investigation was to obtain some further understanding of the mechanism responsible for low-friction behaviour of W-containing DLC coatings (W-DLC) when lubricated with EP additivated oil. Boundary lubricated wear and friction tests were performed under reciprocating sliding motion using a high frequency test rig and a contact pressure of 1.5 GPa. Additionally, some of the tests were performed in a load-scanning reciprocating test rig, with the contact pressure being in the range from 2.4 to 5.6 GPa. The influence of concentration of a sulphur-based EP additive on the friction behaviour was investigated.This investigation showed that W-DLC coatings greatly improve the tribological properties of boundary-lubricated surfaces, especially when pairing coated and uncoated steel surfaces. The improved tribological behaviour was found to be governed by the gradual formation of a WS2 type tribofilm on the steel counter-face or on revealed steel substrate. The friction level depends on the additive concentration.  相似文献   

5.
F. Platon  P. Fournier  S. Rouxel 《Wear》2001,250(1-12):227-236
The goal of the study carried out in the laboratory was to quantify the wear and the friction of two materials used for the manufacturing of hip prostheses. Tests used had to obtain in a short time the tribological behaviour laws of the materials. Tests on a hip simulator have been excluded because their cost and their duration were too high for a program of preliminary development of new materials.

To amplify wear phenomena, dry friction tests were carried out for two configurations: ball-on-disc and pin-on-disc. The influence of the contact pressure at constant sliding velocity on the wear of materials has been clearly shown.

Results obtained with several different tested materials (stainless steel/UHMWPE, stainless steel+DLC coating/UHMWPE, stainless steel+DLC coating/stainless steel+DLC coating, titanium alloy+DLC coating/UHMWPE, titanium alloy+DLC coating/titanium alloy+DLC coating, zirconium dioxide/UHMWPE, alumina/UHMWPE, alumina/alumina) have shown the superiority of DLC coatings. Promising results obtained during this study are in the validation stage on a hip simulator.  相似文献   


6.
Solid lubricants such as molybdenum disulfide can provide very low friction, but their effectiveness especially in the geometrically constrained sliding pairs is limited by plowing of coated surfaces by wear particles. Even in the presence of solid lubricants wear particles cause higher friction by plowing the interface. To minimize plowing, undulated surfaces with microgrooves perpendicular to the sliding direction can be used to trap wear particles. Smooth and undulated stainless steel surfaces were coated with molybdenum disulfide by pulsed laser deposition (PLD) and friction tested. Under identical test conditions, the friction coefficient of coated undulated surfaces is between 20–40 percent lower than that of coated smooth surfaces. The friction coefficient of undulated uncoated surfaces is about 100–350 percent less than that of smooth uncoated surfaces. Moreover, the entrapment of wear particles at the interfaces of geometrically constrained bearings may lead to seizure even when bearing surfaces are coated with solid lubricants. The use of undulated surf aces on these sliding systems has shown improved operating time and a reduced maintenance cycle.  相似文献   

7.
H Benabdallah 《Wear》2003,254(12):1239-1246
Measurements were made of the dynamic friction coefficients and specific wear rates of several thermoplastics rubbing against relatively soft coatings on steel plates. Polyoxymethylene (POM)-based composites were investigated using reciprocating, line contact tests against two types of corrosion-protected steel plates (electro-deposited cathodic epoxy layers, called “E-coatings”, and galvanised plates). In addition to virgin POM, composites containing glass fibres, polytetrafluoroethylene (PTFE) fibres, PTFE micro-powder, and high-viscosity silicon oil were investigated. Sliding speeds ranged from 0.05 to 0.3 m/s, and normal loads ranged from 5 to 30 N. The E-coating failed at high loads and velocities. The beneficial effects of lubricating additives in tests with uncoated steel counterfaces were also observed with the coated steel surfaces. POM with glass fibre additives was found to be more abrasive than the base material. The considered non-conformal contact produced similar friction and wear trends than those obtained for the conformal contact.  相似文献   

8.
The wiping of the windshield of a car is carried out with the reciprocating motion of a rubber blade on glass that removes the water from glass. This function is realized by a contact dimension between the rubber and glass of a few tens of micrometers. A good wiping is characterized by a homogeneous disposal of the water, without noise generation and by limiting as much as possible the phenomenon of wear (loss of wiping or noise presence). This wiping is only possible by a good understanding of the tribological, mechanical and vibroacoustic parameters that control completely the contact. Our article proposes to approach four typical phenomena occurring on rubber wiper blades. Also, we will describe the evolution of dry friction coefficient with temperature. Later, we will approach the influence of velocity on the friction coefficient of a wiper rubber blade by water. Then we will talk about a phenomenon called tacky friction where the friction coefficient reaches a very important value. And in conclusion, we try to give a relationship between the stick–slip and the squeal noise.  相似文献   

9.
In the present study, the tribological performance and compatibility of hydrogenated amorphous carbon coating (a-C:H) and metal-doped diamond-like carbon (DLC) coating (Me-C:H) with formulated oils under the boundary lubrication regime was investigated. The investigation employed ball-on-flat contact geometry in reciprocating sliding motion and six formulated oils (manual gearbox oil, automatic gearbox oil, hydraulic oil, compressor oil, and normal and high performance motor oil), with pure poly-alpha-olefin (PAO) oil used as a reference. In addition, DLC coatings behavior in diesel and gasoline fuel was evaluated.Compared with the uncoated steel surfaces a-C:H coatings give improved wear resistance in base PAO as well as in fully formulated oils and fuels. On the other hand, W-doped DLC coatings show the lowest steady-state friction under boundary lubrication, especially when using oils with high additive contents.  相似文献   

10.
High hardness, high elastic modulus, low friction characteristics, high wear and corrosion resistance, chemical inertness, and thermal stability are factors that make diamond-like carbon (DLC) coatings the subject of many studies. For the same reasons they also seem suitable for use in, amongst others, machine components and cutting tools. While most studies in the literature focus on the influence of coatings on wear and friction in boundary lubrication and pure sliding contacts, few studies can be found concerning rolling and sliding elastohydrodynamic lubrication (EHL) friction, especially in the mixed and full film regime. In this article tests are carried out in a Wedeven Associates Machine tribotester where an uncoated ball and disc pair is compared to the case of coated ball against uncoated disc, coated disc against uncoated ball, and coated disc against coated ball. The tests are conducted at two different temperatures and over a broad range of slide-to-roll ratios and entrainment speeds. The results are presented as friction maps as introduced in previous work (Bj?rling et al. in J Eng Tribol 225(7):671, 2011). Furthermore a numerical simulation model is developed to investigate if there is a possibility that the hard, thin DLC coating is affecting the friction coefficient in an EHL contact due to thermal effects caused by the different thermal properties of the coating compared to the substrate. The experimental results show a reduction in friction coefficient in the full film regime when DLC-coated surfaces are used. The biggest reduction is found when both surfaces are coated, followed by the case when either ball or disc is coated. The thermal simulation model shows a substantial increase of the lubricant film temperature compared to uncoated surfaces when both surfaces are coated with DLC. The reduction in friction coefficient when coating either only the ball or the disc are almost the same, lower than when coating both the surfaces but still higher than the uncoated case. The findings above indicate that it is reasonable to conclude that thermal effects are a likely cause for the decrease in coefficient of friction when operating under full film conditions, and in the mixed lubrication regime when DLC-coated surfaces are used.  相似文献   

11.
The effect of normal load and sliding speed on the tribological properties of a thin film of ultra-high-molecular-weight polyethylene (UHMWPE) coated onto a polyether ether ketone (PEEK) substrate sliding against a stainless steel ball in dry conditions are investigated. Wear tests are carried out with a ball-on-disc configuration to evaluate the tribological properties of the plasma-treated PEEK samples coated with UHMWPE film at different normal loads (5, 7, and 9 N) and linear speeds (0.1, 0.2, and 0.5 m/s). The coated samples exhibited a very low coefficient of friction of ~0.09 compared to that of uncoated PEEK samples, which showed a coefficient of friction of ~0.3.  相似文献   

12.
Application of nano powdered rubber in friction materials   总被引:4,自引:0,他引:4  
Yiqun Liu 《Wear》2006,261(2):225-229
Styrene butadiene nano powdered rubber and nitrile-butadiene nano powdered rubber were used for manufacturing clutch facings, disc brake pads and brake linings to replace conventional styrene butadiene rubber and nitrile-butadiene rubber. The results of constant speed friction test and dynamometer test showed that nano powdered rubber can substantially improve properties of friction materials. The friction coefficient of friction materials modified with nano powdered rubber varies steadily with the change of temperature, and the wearing rate of friction materials is relatively low by using nano powdered rubber. These results indicate that nano powdered rubber has ideal application effect in various friction materials and is a kind of novel rubber modifier for friction materials.  相似文献   

13.
Moving machine assemblies are generally designed to operate in full film lubrication regime to ensure high efficiency and durability of components. However, it is not always possible to ensure this owing to changes in operating conditions such as load, speed, and temperature. The overall frictional losses in machines are dependent on the operating lubrication regimes (boundary, mixed or full-film). The present work is thus aimed at investigating the role of different surface modification technologies on friction of a sliding bearing/roller tribopair both in boundary and mixed lubrication regimes. A special test rig comprising of two bearings was built for the experimental studies. Tribological tests were conducted in a wide speed range to enable studies in boundary and mixed lubrication regimes. The influence of application of different surface modification technologies on both the sliding bearing and the roller surfaces on friction has been studied. The rollers used in these studies were provided with five different coatings (hard DLCs and a soft self-lubricating coating). Additionally, two uncoated rollers having different surface roughness were also studied. Uncoated bearings were used in all tribopairs except two. These two bearings were coated with DLC and phosphate coatings respectively and uncoated rollers were the mating counterparts. Friction measurements were made on the new as well as the previously run-in surfaces. It was found that the rollers with self-lubricating coating resulted in lowest boundary friction closely followed by the rollers with the hardest DLC coatings. The DLC coating applied on to the bearing showed lower boundary friction after running-in. Mixed friction has been found to be mainly dependent on the surface topography characteristics of both the original and the run-in surfaces of bearings and rollers. The harder DLC coatings and the phosphated bearing showed the lowest mixed friction due to an efficient running-in of the bearing surface.  相似文献   

14.
用新型摩擦装置测定薄板成形的摩擦系数   总被引:2,自引:0,他引:2  
采用一种新型的测量板成形中工具与工件之间摩擦系数的模拟装置,试验测定了不同厚度及成分的钢板在不同条件下的摩擦系数。被测钢板有08Al,IF钢,IF钢镀锌板,测试中改变润滑条件,辊距、辊径和板厚,板表面取向。结果表明摩擦系数与润滑和冲头的几何形状密切相关。  相似文献   

15.
In this paper, both the kinetic friction characterizations and the stick–slip motion phenomena for the tubular rubber seals are studied. First, the kinetic friction model of the rubber seal is established to explain the kinetic friction mechanism of the tubular rubber seals. Second, both the measurement principle and the test instrument for the kinetic friction properties of the tubular rubber seals are developed, and then both the normal force curve and the friction force curve are obtained. Finally, the influences of the sliding velocity and the compressive displacement on the kinetic friction properties and the stick–slip motion of the tubular rubber seals are analyzed. The results will play an important role for designing and evaluating advanced rubber seal components.  相似文献   

16.
MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.  相似文献   

17.
Process selection for repair of mechanical components due to wear and corrosion, e.g. damage of aluminum casting housings of fuel injection systems, is based on cost and response time factors, provided that the mechanical performance is maintained within acceptable limits. One of the promising and emerging repair technologies is Cold Gas-Dynamic Spray (CGDS) coating, where a high-pressure gas propels fine powder particles to very high velocities to produce surface coating. It is essential to identify the optimum process conditions and powder composition to produce repaired surfaces with tribological properties close to those of the originally manufactured part (without coating). The objective of this work is to compare the dynamic friction and fretting wear properties of the repaired surfaces using various types of coating composition and spraying techniques. Eight types of CGDS coatings, applied to AMS 4260 aluminum specimens, were fretted against 440C stainless steel specimens at low and high nominal loads to assess their fretting wear resistance, dynamic friction properties and damping capacity. The optimum coating composition and process conditions were identified. In comparison to the uncoated specimen, this optimum coating offered tribological characteristics close to the uncoated material and even better dynamic friction properties.  相似文献   

18.
应用非平衡磁控溅射技术在6204轴承钢球表面制备出Cr/C复合镀层,用电子透射显微镜(TEM)和X射线光电子能谱(XPS)分析镀层微观结构,对镀层钢球轴承和无镀层钢球轴承的速度性能和断油性能进行了试验。结果表明,Cr/C复合镀层有良好的显微结构,有大量的石墨存在。与无镀层钢球轴承相比,镀层钢球轴承有缓慢的温升、良好低振动性能和振动的平稳性能,特别是高速运转时,减振效果尤为明显,保证了轴承有优异的高速性能;镀层钢球轴承有良好的自润滑性能,极大提高轴承应急运行性能。  相似文献   

19.
用闭合场非平衡磁控溅射离子镀PVD涂层工艺在高速钢麻花钻上沉积了CrA lTiN梯度涂层。在干式切削条件下,对45#号钢和30CrMnS iA钢进行了钻削试验。通过涂层与未涂层钻头的寿命、磨损和切削力等试验比较,表明CrA lTiN梯度涂层钻头的切削性能远优于未涂层钻头,是一种极有发展前途的刀具涂层。  相似文献   

20.
涂层钻头加工不锈钢磨损机理研究   总被引:1,自引:0,他引:1  
研究了TiN、TiAlN、TiCN三种高速钢涂层专用麻花钻头钻削加工1Cr18NigTi奥氏体不锈钢时的刀具寿命以及刀具表面涂层的磨损特性。通过研究刀具寿命以及对刀具前刀面涂层磨损形态和元素成分的变化规律,揭示了三种涂层钻头的磨损机理。结果表明:在中低速、湿切削的情况下,TiCN涂层要优于TiAlN涂层,明显优于TiN涂层;TiCN涂层高速钢专用钻头较TiAlN、TiN涂层高速钢专用钻头更加适合不锈钢的钻削加工。研究结果对提高不锈钢钻削加工效率与加工质量具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号