首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
The fretting corrosion behaviour of a 316L SS flat against a PMMA counterface has been investigated in an artificial physiological medium. A specific device has been used to visualize the in situ degradation at the contact interface. Simultaneous analysis of the coefficient of friction and free corrosion potential has shown four distinct stages during fretting experiments. An energy-oriented approach to the fretting process was conducted in tandem with measurement of wear. This method has shown a linear progression in the wear volume of the samples as a function of the interfacial energy dissipated during fretting. The presence of chlorides contributes to a considerable acceleration of the degradation of the stainless steel surface. This process was explained by a mechanism related to crevice corrosion activated by friction.  相似文献   

2.
Abstract

The fretting corrosion of a Ti–6Al–4V flat in contact with a poly(methyl methacrylate) (PMMA) ball in 0·9 wt-% NaCl solution was investigated using a fretting rig operating under electrochemical control. The effect of potential and of normal load on friction, wear and electrochemical response was studied under gross slip regime. No noticeable mechanical deterioration of the Ti–6Al–4V surface could be observed. At anodic potential, alloy corrosion was only slightly enhanced by fretting. Wear of PMMA was large and controlled by third body formation. A correlation between PMMA wear coefficient and thickness of third body was observed.  相似文献   

3.
4.
The fretting wear behavior of Cu–Al coating was investigated with and without fatigue load under the dry and wet (lubricated) contact conditions. The Cu–Al coating was plasma deposited on titanium alloy, Ti-6Al-4V. Fretting regime was determined from the shape of fretting hysteresis loop. Fretting regime changed from partial slip to total (gross) slip at ∼15 μm of the applied relative displacement, and this transition point was independent of fatigue loading and contact surface (lubricated versus dry) conditions. Wet contact condition reduced frictional force during cycling, as evidenced by the lower-tangential force. Wear analysis using the accumulated dissipated energy approach did not show any effect of contact surface condition. In other words, the relationship between the accumulated dissipated energy and wear volume showed a linear relationship, and it was independent of loading and contact surface conditions, as well as of the fretting regime. Further, the relationship between the wear depth and accumulated dissipated energy did not show any effect of loading and contact surface conditions, as well as of the fretting regime up to instant when the maximum wear depth was equal to the coating thickness. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United State Air Force, Department of Defense, or the U.S. Government.  相似文献   

5.
Fretting wear and fretting fatigue are two commonly observed material damages when two contacting bodies with a clamping load are under the oscillatory motion. In this study, fretting wear damage of Cu–Al coating on titanium alloy, Ti–6Al–4V substrate was investigated using the dissipated energy approach. Fretting tests were conducted with either no fatigue load or the maximum fatigue load of 300 MPa and stress ratio of 0.1 on the substrate (specimen). In order to investigate the effect of contact load and contact size, different pad sizes and contact loads were used in the tests. Accumulated dissipated energy versus wear volume data showed a linear relationship regardless of fatigue loading condition on specimen with the smaller pad size. However, two separate linear relationships were observed based on the fatigue loading condition with the larger pad size, such that a relatively more dissipated energy was required for a certain amount of wear with fatigue load on the specimen. The linear relationship between the accumulated dissipated energy and wear volume for both pad sizes extended from partial to gross slip regimes and was not affected by the applied contact load. Further, fretting tests with and without fatigue load resulted in different shapes of fretting loops when the larger pad size was used.  相似文献   

6.
Fretting behavior of Cu–Al coating on Ti–6Al–4V substrate was investigated with and without fatigue load. Soft and rough Cu–Al coating resulted in abrasive wear and a large amount of debris remained at the contact surface, which caused an increase in tangential force during the fretting test under gross slip condition. Fretting in the partial slip condition also showed the wear of coating. To characterize wear, dissipated energies during fretting were calculated from fretting loops and wear volumes were obtained from worn surface profiles. Energy approach of wear analysis showed a linear relationship between wear volume and accumulated dissipated energy. This relationship was independent of fatigue loading condition and extended from partial slip to gross slip regimes. As an alternate but simple approach for wear analysis, accumulated relative displacement range was correlated with the wear volume. This also resulted in a linear relationship as in the case of accumulated dissipated energy suggesting that the accumulated relative displacement range can be used as an alternative parameter for dissipated energy to characterize the wear. When the maximum wear depth was equal to the thickness of Cu–Al coating, harder Ti–6Al–4V substrate inhibited further increase in wear depth. Only when a considerable energy was supplied through a large value of the applied displacement, wear in the substrate material could occur beyond the thickness of coating.  相似文献   

7.
Kyungmok Kim  Jean Geringer 《Wear》2012,274(1-2):497-503
This paper analyses energy dissipation of fretting corrosion in total hip prosthesis. Fretting corrosion is arisen between metallic prosthesis and bone and/or bone cement, leading to aseptic loosening. In this study, fretting corrosion tests are conducted in Ringer's solution. Stainless steel (316L) and poly (methyl methacrylate) are used for total hip prosthesis. Various potentials are applied in fretting corrosion tests and then dissipated energy is determined with number of cycles. Results show that dissipated energy is rapidly accumulated during the initial running-in period and accumulation of dissipated energy change can be expressed with a power-law form. After the initial running-in period, dissipated energy is linearly accumulated with respect to number of cycles. It is identified that a parameter in the power-law relation can describe the influence of applied potentials in fretting corrosion. In addition, the parameter shows relation to wear volume measured in stainless steel.  相似文献   

8.
Abstract

The tension–tension fretting fatigue tests of steel wires were performed on a self-made fretting fatigue test equipment under contact loads ranging from 40 to 70 N and a strain ratio of 0·8. The results showed that when the contact load increased, the fretting regime of steel wires transformed from gross slip regime to mixed fretting regime. The fretting fatigue life in the mixed fretting regime was significantly lower than that in the gross slip regime. The main fretting wear mechanisms in the gross slip regime, where there were serious fretting damage and a lot of wear debris, were abrasive wear and fatigue wear. Microcracks were observed in the fretting scar of the mixed fretting regime, and the main fretting wear mechanisms were adhesive and fatigue wears. The fretting wear scar was the fatigue source region, and the fatigue fracture surface could be divided into three regions.  相似文献   

9.
In the case of surface coatings application it is crucial to establish when the substrate is reached to prevent catastrophic consequences. In this study, a model based on local dissipated energy is developed and related to the friction process. Indeed, the friction dissipated energy is a unique parameter that takes into account the major loading variables which are the pressure, sliding distance and the friction coefficient. To illustrate the approach a sphere/plane (Alumina/TiC) contact is studied under gross slip fretting regime. Considering the contact area extension, the wear depth evolution can be predicted from the cumulated dissipated energy density. Nevertheless, some difference is observed between the predicted and detected surface coating endurance. This has been explained by a coating spalling phenomenon observed below a critical residual coating thickness. Introducing an effective wear coating parameter, the coating endurance is better quantified and finally an effective energy density threshold, associated to a friction energy capacity approach, is introduced to rationalize the coating endurance prediction. The surface treatment lifetime is then simply deduced from an energy ratio between this specific energy capacity and a mean energy density dissipated per fretting cycle. The stability of this approach has been validated under constant and variable sliding conditions and illustrated through an Energy Density–Coating Endurance chart.  相似文献   

10.
Zirconium alloys are highly desirable in nuclear applications due to their transparency to thermal energy neutrons and for their high corrosion resistance. The main objective of this study is to investigate the fretting wear mechanism of Zr–2.5%Nb alloy. The experimental work was carried out in air at 265 °C, using a specially designed fretting wear tribometer. The transfer of material, the change in the wear volume and the maximum wear depth with the number of cycles were measured through 3D mapping of the topography of the fretted surface. SEM and Fourier Transform Infrared Interferometry methods were used to examine the microspall pits and to measure the distribution of the thickness of oxide layer in the fretting region. For relatively small slip amplitude, the results showed that the fretting wear mechanism is initially dominated by adhesion and abrasion actions and then by delamination and surface fatigue. The time variation of the wear losses was shown to be cyclic until a steady state value is reached. At high slip amplitudes, however, abrasion and delamination are the only dominant wear mechanisms. The volumetric wear losses were found to decrease monotonically with the number of cycles. A novel approach was introduced, whereby the thermal and electrical contact resistances of the fretting interface are simultaneously measured. The results demonstrated the potential use of this non-intrusive approach for real-time monitoring of the fretting wear mechanism.  相似文献   

11.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

12.
The effects of applying a bonded MoS2 solid lubricant to a 1050 steel substrate were investigated using a torsional fretting wear apparatus. Tests were conducted under a normal load of 50 N with angular displacement amplitudes ranging from 0.1 to 5°. Wear scars were examined using scanning electron microscopy, energy-dispersive X-ray spectrometry, optical microscopy, and surface profilometry. The MoS2 coating exhibited different torsional fretting regimes than those of the substrate. Fretting regimes of the coating were primarily in the partial slip regime (PSR) and the slip regime (SR) with no mixed fretting regime. The width of the PSR narrowed. Due to the lubricating effects of the coating, the friction torque was consistently lower than that of the substrate. The damage to the coating in the PSR was very slight, and its granular structure remained even after 1,000 cycles. The damage mechanism to the SR coating was a combination of abrasive wear, oxidative wear, and delamination. The MoS2 coating had potential to alleviate torsional fretting wear.  相似文献   

13.
The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In this study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.  相似文献   

14.
粘结石墨固体润滑涂层微动磨损性能研究   总被引:7,自引:0,他引:7  
在不同位移幅值与载荷下研究了粘结石墨固体润滑涂层的微动磨损特性,并利用扫描电镜和X射线衍射仪分析了涂层微动磨斑。结果表明:粘结石墨涂层具有良好的抗微动损伤性能,随循环次数的变化只存在部分滑移区和滑移区,部分滑移区涂层损伤轻微;滑移区损伤严重,主要表现为裂纹萌生和扩展,最终按剥层机制呈层状剥落。  相似文献   

15.
Fretting wear and fatigue may occur between any two contacting surfaces, wherever short‐amplitude reciprocating sliding is present for a large number of cycles. A test device has been developed for the evaluation of fretting fatigue and wear in partial and gross slip conditions. Three similar sphere‐on‐plane contacts run at the same time. Normal force, tangential force or displacement amplitude and constant bulk stress can be controlled and measured separately. Reciprocating tangential displacement is produced with rotational motion, the amplitude and frequency of which can be adjusted and controlled accurately by an electric shaker. The number of load cycles for crack initiation and growth is determined with strain‐gauge measurements near the fretting point of contact. The contact surfaces are measured with 3D optical profilometer before fretting measurements to determine actual contact geometry. The measurements were done with quenched and tempered steel. The initial results indicate that cracks are mostly formed in partial slip conditions, whereas fretting wear is more heavily involved in gross slip conditions. The initiation of a crack occurs near the edge of the contact in the slip direction, where the calculated cracking risk has its maximum value in partial slip conditions. The number of cracks increases as the displacement amplitude, i.e. friction force, increases in partial slip conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Under the conditions of cyclic loading at fixed joints, the repeated mutual slip of the contacting surfaces is observed in the contact zone, fretting appears, and the wear and destruction of the assembly elements occurs. The existing methods for overcoming fretting are aimed at reducing its intensity. The finite element analysis of fixed joints of smooth contact surfaces and surfaces with relief under the conditions of cyclic loading of junctions makes it possible to reveal the regions of mutual slip and, to determine the parameters of the microrelief, which contribute the most to the onset of contact shakedown. The method for improving the resistance to fretting in friction units based on achieving the conditions for the onset of contact shakedown using microrelief is implemented for fixed joints of a hard-alloy cutter pick and a drilling bit rolling cutter, as well as for an abutting joint of the rotor impeller shrouds of a universal gas distributor.  相似文献   

17.
Fretting damage was one of the most important reasons for the failure of the railway axle. Fretting wear (tangential fretting mode) tests of a railway axle steel (LZ50 steel) flats against 52 100 steel balls were carried out under different normal loads and displacement amplitudes on a hydraulic fretting wear rig. Dynamic analyses in combination with microscopic examinations have been performed. The experimental results showed that the fretting regimes of the LZ50 steel were strongly dependent upon the imposed normal loads and displacement amplitudes. The Ft/Fn curves exhibited different variation trends in different fretting running regimes. The fretting scars presented slight damage in partial slip regime. In mixed fretting regime, the trace of the plowing and plastic deformation flow can be observed on the fretting scars. The wear mechanism during this regime was the combination of the abrasive wear, oxidative wear and delamination accompanied with obvious plastic deformation. The detachment of particles and plowing traces were the main phenomena in slip regime. And, thicker debris layer covered the contact zone of the scar. The severe degradation in slip regime presented the main wear mechanisms of abrasive wear, oxidative wear and delamination.  相似文献   

18.
N. Ohmae  T. Tsukizoe 《Wear》1974,27(3):281-294
The effect of slip amplitude on the mechanism of fretting was investigated. Measurements of wear volume, frictional coefficient and of electrical contact resistance were carried out to clarify the wear mechanism. X-ray microdiffraction was used to observe the difference of wear behaviour, and scanning electron microscopic observations were made.At small slip amplitudes wear damage was small compared with that at larger amplitudes the transition being in the region of 70 μ.At smaller slip amplitudes fretting oxidation, a mild type of wear occurs. At larger slip amplitudes, adhesion and abrasion together with oxidation cause fretting wear. At much larger slip amplitudes, wear similar to reciprocating sliding wear occurs.  相似文献   

19.
20.
A friction energy formalism is considered and adapted to formalize the fretting wear responses of adhesive wear and non-adhesive wear interfaces. It is shown that for non-adhesive wear tribocouples like hard coatings (TiN, TiC, etc.) the wear kinetics can be formalized using the accumulated friction dissipated energy. By contrast, adhesive wear contacts involving aluminium and titanium alloys display a critical dependance regarding the applied sliding amplitude. The wear kinetics of such systems is captured by considering a sliding reduced energy wear formulation. A combined composite energy wear formulation is then introduced to formalize the fretting wear response whatever the tribocouple behaviour. It is shown that a local approach, focusing on wear depth analysis, is required to predict interface durability. A FEM investigation demonstrates that the wear depth kinetics can be predicted by considering the accumulated energy density. It concludes that interface durability can be related to a single energy density capacity variable (χ) defined as the maximum accumulated energy density which can be dissipated in the interface before contact failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号