首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 2 毫秒
1.
2.
Feng-hua Su  Zhao-zhu Zhang  Wei-min Liu 《Wear》2008,265(3-4):311-318
Nano-ZnO was successfully grafted with 2,4-toluenediisocyanate (TDI) and β-aminoethyltrimethoxylsilane (OB551) to avoid the agglomeration of nano-ZnO in composite. The hybrid glass/PTFE fabric composites reinforced with the untreated, OB551 and TDI modified nano-ZnO, respectively, were prepared by dip-coating of the hybrid fabric in a phenolic adhesive resin containing the nanoparticles to be incorporated and the successive curing. The friction and wear behaviors of various nano-ZnO reinforced hybrid glass/PTFE fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high-temperature friction and wear tester, with the unfilled one as a reference. The morphologies of the worn surfaces of the composites and of the counterpart pins were analyzed using scanning electron microscopy. In addition, FTIR spectrum was taken to characterize the untreated and treated nano-ZnO. It is found that the untreated and treated nano-ZnO reinforced hybrid glass/PTFE fabric composites exhibit improved wear resistance and friction-reduction in comparison with the unfilled one. The TDI modified nano-ZnO reinforced composite can obtain the best friction and wear performance under different applied load; followed by the OB551 modified nano-ZnO reinforced one. Sliding conditions, such as environmental temperature and lubricating condition, significantly affect the tribo-performances of the unfilled and filled hybrid glass/PTFE fabric composites.  相似文献   

3.
Shangguan Qian-qian  Cheng Xian-hua   《Wear》2006,260(11-12):1243-1247
Carbon fibers (CF) were surface treated with air-oxidation, air-oxidation followed by rare earths (RE) treatment and RE treatment, respectively. The friction and wear properties of the polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under oil lubrication, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the PTFE composites were examined using a scanning electron microscopy (SEM). Experimental results revealed that surface treatment of carbon fibers reduced the wear of CF-reinforced PTFE composites. Among all the treatments to carbon fibers, RE treatment was the most effective and lowest friction and wear rate of CF-reinforced PTFE composite was exhibited, owing to the effective improvement of the interfacial adhesion between the carbon fibers and PTFE matrix.  相似文献   

4.
The purpose of this study was to evaluate the surface roughness, microhardness, color change, and translucency of a newly marketed universal nanohybrid composite resin (CR) (G-aenial A'CHORD) comparing with four contemporary universal CRs including two nanofilled (Filtek and Estelite Asteria) and two nanohybrid CRs (Charisma Dimond and Neo Spectra ST HV in vitro). Sixty-five specimens (8.0 mm × 2.0 mm) were fabricated (n = 13, per group). After finishing and polishing, specimens were subjected to surface roughness and microhardness tests. Color and translucency of the specimens were evaluated at baseline and after darkening with coffee solution at day 1 and day 7. A representative specimen from each group was investigated under scanning electron microscopy (SEM). Data was analyzed statistically (p < .05). There were significant differences among the groups in terms of surface roughness, microhardness, color, and translucency. The surface roughness was recorded as: Charisma Diamond > Neo Spectra ST HV, Filtek > Estelite Asteria, G-aenial A'CHORD, whereas Vickers Hardness number was as: Filtek, Charisma Diamond > Neo Spectra ST HV > G-aenial A'CHORD, Estelite Asteria. Color change was as: Charisma Diamond > Neo Spectra ST HV, Filtek, G-aenial A'CHORD > Estelite Asteria and the translucency was as: Neo Spectra ST HV > G-aenial A'CHORD, Filtek > Estelite Asteria, Charisma Diamond. SEM examinations revealed smooth surfaces for G-aenial A'CHORD, Neo Spectra ST HV and Estelite Asteria. Mechanical and optical properties of universal composite resins with different compositions show variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号