首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical signature of the plant responsible for host recognition and oviposition by B. fusca.  相似文献   

2.
The cigarette beetle, Lasioderma serricorne, is a serious global pest that preys on stored food products. Larvae of the beetle cannot grow on roasted coffee beans or dried black or green tea leaves, although they oviposit on such products. We investigated oviposition by the beetles on MeOH extracts of the above products. The number of eggs laid increased with an increase in dose of each extract, indicating that chemical factors stimulate oviposition by the beetles. This was especially true for \ coffee bean extracts, which elicited high numbers of eggs even at a low dose (0.1 g bean equivalent/ml) compared to other extracts. Coffee beans were extracted in hexane, chloroform, 1-butanol, MeOH, and 20 % MeOH in water. The number of eggs laid was higher on filter papers treated with chloroform, 1-butanol, MeOH, and 20 % MeOH in water extracts than on control (solvent alone) papers. The chloroform extract was fractionated by silica-gel column chromatography. Nine compounds were identified by gas chromatography/mass spectrometry from an active fraction. Of these compounds, only a significant ovipositional response to catechol was observed.  相似文献   

3.
The spicebush swallowtail, Papilio troilus (L.), lays its eggs on plants in the family Lauraceae. Sassafras [Sassafras albidum (Nutt.) Nees], spicebush [Lindera benzoin (L.) Spreng.], redbay (Persea borbonia (L.)] and camphortree [Cinnamomum camphora (Nees) Eberm.] are four of its known host plants. In one-choice tests, free-flying spicebush swallowtail females laid eggs on chemical extracts of the leaves of each of these four hosts. In two-choice experiments, females always preferred to oviposit on an extract of sassafras compared to extracts of the other three hosts. It was shown for spicebush extract that this response was not due to oviposition experience. Previously we had identified one of the host plant chemicals acting as an oviposition stimulant in sassafras extract as 3-caffeoyl-muco-quinic acid (3-CmQA). Extracts of the other three hosts did not contain this compound. The addition of 3-CmQA alone to spicebush extract did not increase oviposition activity. It did, however, increase discrimination between hosts and nonhosts. When a fraction of sassafras extract containing 3-CmQA and other synergistic stimulants was added to spicebush extract, preference for sassafras extract was no longer recorded. These results show existing differences in oviposition chemistry among host plants of the spicebush swallowtail and how these differences can influence oviposition choice in bioassay experiments.  相似文献   

4.
Pieris brassicae L. butterflies secrete miriamides onto their eggs. These avenanthramide alkaloids are strong oviposition deterrents when sprayed onto a cabbage leaf. However, these compounds could not be detected in cabbage leaves from which egg batches had been removed two days after deposition and that still showed oviposition deterrency. It was concluded that the miriamides were not directly responsible for the avoidance by females of occupied leaves while searching for an oviposition site. Evidence was obtained that cabbage leaves themselves produce oviposition deterrents in response to egg batches. Fractions containing potent oviposition deterrents could be isolated from surface extracts of leaves from which previously laid egg batches had been removed. The term host marking pheromone that was used previously is not applicable in this case.  相似文献   

5.
Selecting a suitable oviposition site is crucial to the fitness of female insects because it determines the successful development of their offspring. During the oviposition process, an insect must use cues from the external environment to make an appropriate choice of where to lay eggs. Generalist insects can detect and react to a plethora of cues, but are under selection pressure to adopt the most reliable ones to override noise and increase efficiency in finding hosts. The oriental fruit fly, Bactrocera dorsalis (Hendel), is a generalist that utilizes a multitude of fruits as oviposition sites. However, the identity and nature of oviposition stimulants for B. dorsalis is not well known. Recently, we identified a volatile compound γ-octalactone that elicits an innate oviposition response in B. dorsalis. We screened 21 EAD-active volatiles, identified from mango, for their oviposition stimulant activity. 1-Octen-3-ol, ethyl tiglate, and benzothiazole instigated oviposition in gravid B. dorsalis females. Flies deposited most of their eggs into pulp discs with oviposition-stimulants, and only a small fraction of eggs were laid into control discs. In a binary choice oviposition assay, 95.1, 93.7, and 65.6 % of eggs were laid in discs treated with 1-octen-3-ol, ethyl tiglate, and benzothiazole, respectively. Single plate two-choice assays proved that oviposition-stimulants were crucial in oviposition site selection by gravid female B. dorsalis. In simulated semi-natural assays, gravid B. dorsalis females accurately differentiated between fruits with and without 1-octen-3-ol, ethyl tiglate, and γ-octalactone by laying more eggs on the treated fruit. However, benzothiazole did not elicit an increase in oviposition when presented in this context. Our results suggest that the identified oviposition-stimulants are ‘key’ compounds, which the flies associate with suitable oviposition sites.  相似文献   

6.
In nature, Papilio polytes utilizes a limited range of rutaceous plants as hosts. We isolated and identified oviposition stimulants for the butterfly from the foliage of its primary host plant Toddalia asiatica. Females readily deposited eggs in response to a methanolic extract of the plant. Partition of the extract with organic solvents revealed that chemicals responsible for eliciting egg-laying resided in a water-soluble fraction. Further bioassay-guided fractionation of the active fraction by column chromatography, preparative TLC, and HPLC led to the isolation of two oviposition stimulants. One was isolated from an amphoteric fraction and identified as trans-4-hydroxy-N-methyl-L-proline [(–)-(2S,4R)-4-hydroxy-1-methyl pyrrolidine-2-carboxylic acid; HMP]. The other, isolated from an acidic fraction, was identified as 2-C-methyl-D-erythronic acid [(–)-(2R,3R)-2-methyl-2,3,4-trihydroxybutanoic acid; MEA]. HMP alone evoked significant oviposition-stimulatory activity, although this was much lower than that of the original water-soluble fraction. MEA, on the other hand, alone did not elicit positive responses from females. However, HMP, when assayed in combination with MEA, markedly enhanced the female response, and the mixture was as active in stimulating oviposition as were the original water-soluble fraction and the plant foliage. We conclude that HMP is a substance crucial for host recognition by females, while MEA is a synergistic stimulant involved in host recognition and/or preference.  相似文献   

7.
Host location and acceptance by egg parasitoids can be mediated by close-range host stimuli. In this study, we tested the response of Trichogramma japonicum Ashmead to cuticular extracts of adult and larval rice yellow stem borer (YSB), Scripophaga incertulas Walker. We also studied the wasps’ response to extracts from YSB larval frass. Laboratory bioassays revealed that hexane extracts of the adult host body stimulate ovipositor probing of T. japonicum. Extracts of larval frass also stimulated parasitization. In contrast, host larval cuticular extracts had no effect on parasitization rates. Fractionation of the crude extracts of adult YSB cuticular extracts was performed using silica gel chromatography, followed by bioassays of the individual fractions to test their effects on wasp behavior. Analyses of the most active fractions by gas chromatography–mass spectrometry revealed that the extract contained saturated long chain alkanes and alkenes, with carbon numbers ranging from C20 to C32. Hydrocarbons were applied onto host eggs to test their effects on parasitization rates. Treatments of eggs with docosane, tetracosane, pentacosane, and eicosane enhanced host egg parasitization, while pentadecane, hexadecane, and nonadecane deterred oviposition. An erratum to this article can be found at  相似文献   

8.
MANZANO  C  FERNANDEZ  PC  HILL  JG  LUFT ALBARRACIN  E  VIRLA  EG  COLL ARÁOZ  MV 《Journal of chemical ecology》2022,48(7-8):650-659

Parasitoids are known to exploit volatile cues emitted by plants after herbivore attack to locate their hosts. Feeding and oviposition of a polyphagous herbivore can induce the emission of odor blends that differ among distant plant species, and parasitoids have evolved an incredible ability to discriminate them and locate their hosts relying on olfactive cues. We evaluated the host searching behavior of the egg parasitoid Cosmocomoidea annulicornis (Ogloblin) (Hymenoptera: Mymaridae) in response to odors emitted by two taxonomically distant host plants, citrus and Johnson grass, after infestation by the sharpshooter Tapajosa rubromarginata (Signoret) (Hemiptera: Cicadellidae), vector of Citrus Variegated Chlorosis. Olfactory response of female parasitoids toward plants with no herbivore damage and plants with feeding damage, oviposition damage, and parasitized eggs was tested in a Y-tube olfactometer. In addition, volatiles released by the two host plant species constitutively and under herbivore attack were characterized. Females of C. annulicornis were able to detect and significantly preferred plants with host eggs, irrespectively of plant species. However, wasps were unable to discriminate between plants with healthy eggs and those with eggs previously parasitized by conspecifics. Analysis of plant volatiles induced after sharpshooter attack showed only two common volatiles between the two plant species, indole and β-caryophyllene. Our results suggest that this parasitoid wasp uses common chemical cues released by many different plants after herbivory at long range and, once on the plant, other more specific chemical cues could trigger the final decision to oviposit.

  相似文献   

9.
Experiments conducted in the laboratory tested the hypotheses that aggregated oviposition by onion maggot flies,Delia antiqua (Meigen), is caused by stimuli associated with ovipositing females, newly laid eggs, or both. Using a paired oviposition station bioassay that eliminated visual stimuli associated with the treatment under study, 67% of the eggs laid by caged females were in response to the odor of females already ovipositing on an onion slice, as opposed to 33% of the eggs laid in response to an onion slice alone. When newly laid eggs were transferred to onion slices and held for either 24 or 48 hr before being bioassayed against similarly aged untreated onions, 74% and 97% of the eggs were laid at the egg-treated onion stations, respectively. Similar results were achieved when an aqueous wash of newly laid eggs was applied to the onion slice. When the egg wash was processed through a bacterial filter or when eggs were present but not in contact with onions, all response was eliminated. These results implicate microorganisms transmitted on the egg surface in creating an attraction for ovipositing females. Heptane extracts of ovipositor tips from mated, ovipositing females induced 72% of the test females to oviposit near points at which extracts were applied to the oviposition station floor. A behavioral sequence for an optimal host-selection strategy is hypothesized, whereby host-seeking female onion flies respond to host-derived alkyl sulfides at long range and metabolic by-products of microbially infested hosts and visual cues at short range (ca. l m), with final selection of oviposition sites potentially reinforced by contact with an aggregation pheromone released or left on the substrate by ovipositing females.  相似文献   

10.
In flight-tunnel assays, mated femaleHeliothis virescens (F.) moths responded by positive anemotaxis to volatiles from extracts of two host plants (cotton and tobacco), but they did not fly to an extract from elderberry (Sambucus simpsonii Rehd.), a nonhost that contains an oviposition deterrent forH. virescens. When the elderberry extract was mixed with extract from either cotton or tobacco, the flight response by moths to volatiles emanating from the extract blends was reduced significantly at most doses when compared to the positive response to extracts from either host alone. The number of landings (including brief contacts) and landings that resulted in oviposition on the substrates treated with extract blends also were reduced significantly in most tests.This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or the recommendation of its use by USDA.  相似文献   

11.
The host selection process ofBlepharipa pratensis (Meigen), a tachinid parasite of the gypsy moth,Lymantria dispar L., was investigated. Once in the host's habitat, and following contact with a recently damaged leaf edge (cut, torn, eaten), the fly orients perpendicular to the edge and moves back and forth with the front tarsi grasping the damaged edge. Oviposturing (oviposition intention) may occur. Leaf exudates appear to arrest the fly on the leaf and increase tarsal examination (searching). If an edge of a gypsy moth-eaten leaf is contacted, oviposition usually occurs. Significantly more eggs are laid when host-browsed foliage is encountered, compared to mechanically cut or damaged foliage, indicating response to a cue left by the host during feeding. The number of host-damaged leaf clusters in an area significantly enhances oviposition there; in field-cage tests, significantly more eggs (7911) were laid in simulated-crown areas with all clusters browsed, compared to the adjacent areas containing 1/2 browsed (4200 eggs) and undamaged clusters (2209 eggs). A host selection sequence is suggested and discussed.  相似文献   

12.
Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved.  相似文献   

13.
In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and α-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.  相似文献   

14.
In Southwestern USA, the jimsonweed Datura wrightii and the nocturnal sphinx moth Manduca sexta form a pollinator-plant and herbivore-plant association. While certain plant volatile organic compounds (VOCs) attract moths for oviposition, it is likely that other host-derived olfactory cues, such as herbivore-induced VOCs, repel moths for oviposition. Here, we studied the oviposition preference of female M. sexta towards intact and damaged host plants of three species: D. wrightii, D. discolor (a less preferred feeding resource but also used by females for oviposition), and Solanum lycopersicum–tomato–(used by moths as an oviposition resource only). Damage was inflicted to the plants either by larval feeding or artificial damage. Mated females were exposed to an intact plant and a damaged plant and allowed to lay eggs for 10 min. Oviposition preferences of females were highly heterogeneous in all cases, but a larger proportion of moths laid significantly fewer eggs on feeding-damaged and artificially damaged plants of S. lycopersicum. Many females also avoided feeding-damaged D. discolor and D. wrightii plants induced by treatment with methyl jasmonate. Chemical analyses showed a significant increase in the total amount of VOCs released by vegetative tissues of feeding-damaged plants, as well as species-specific increases in emission of certain VOCs. In particular, feeding-damaged S. lycopersicum plants emitted (-)-linalool, an odorant that repels moths for oviposition. Finally, the emission of D. wrightii floral VOCs, which are important in mediating feeding by adult moths (and hence pollination), did not change in plants damaged by larval feeding. We propose that the observed differential effects of herbivory on oviposition choice are due to different characteristics (i.e., mutually beneficial or parasitic) of the insect–plant interaction.  相似文献   

15.
Eggs ofPieris rapae (L.) contain a water- and methanol-soluble oviposition-deterring pheromone (ODP) that is avoided by ovipositing females offered treated and untreated cabbage leaves in a choice situation. Water extracts of female accessory glands also deter oviposition. Egg washes and gland extracts stimulate a contact chemoreceptor in sensilla on the fore tarsi. Electroantennogram (EAG) recordings show that antennal receptors respond to volatiles from conspecific eggs, but not to volatiles from eggs ofMamestra brassicae. No differences were detected between North American and European insects with regard to production and perception of ODP. These results differ from conclusions in the literature based upon field observations. It is concluded that this discrepancy in due to methodological differences.  相似文献   

16.
The phlebotomine sandflyLutzomyia longipalpis Lutz and Neiva, the vector of visceral leishmaniasis in South America, has recently been shown to produce an oviposition semiochemical. In the present study it was found that a nonpolar extract of eggs was attractive and/or stimulatory to ovipositing females. A Chromatographic investigation indicated the presence of similar compounds in accessory glands and egg extracts. Extract of accessory gland was also found to elicit a positive oviposition response. It is concluded that the pheromone is produced in the accessory glands and is secreted onto the eggs during oviposition.  相似文献   

17.
Plants produce a variety of secondary metabolites (PSMs) that may be selective against herbivores. Yet, specialist herbivores may use PSMs as cues for host recognition, oviposition, and feeding stimulation, or for their own defense against parasites and predators. This summarizes a dual role of PSMs: deter generalists but attract specialists. It is not clear yet whether specialist herbivores are a selective force in the evolution of PSM diversity. A prerequisite for such a selective force would be that the preference and/or performance of specialists is influenced by PSMs. To investigate these questions, we conducted an oviposition experiment with cinnabar moths (Tyria jacobaeae) and plants from an artificial hybrid family of Jacobaea vulgaris and Jacobaea aquatica. The cinnabar moth is a specialist herbivore of J. vulgaris and is adapted to pyrrolizidine alkaloids (PAs), defensive PSMs of these plants. The number of eggs and egg batches oviposited by the moths were dependent on plant genotype and positively correlated to concentrations of tertiary amines of jacobine-like PAs and some otosenine-like PAs. The other PAs did not correlate with oviposition preference. Results suggest that host plant PAs influence cinnabar moth oviposition preference, and that this insect is a potential selective factor against a high concentration of some individual PAs, especially those that are also involved in resistance against generalist herbivores.  相似文献   

18.
The choice of a suitable oviposition site by female insects is essential for survival of their progeny. Both olfactory and contact cues of the oviposition site may mediate this choice. The polyphagous Delia platura (Diptera: Anthomyiidae), a severe agricultural pest of numerous crops, lays eggs in the soil close to germinating seeds. Maggots feed upon the cotyledons. Only little is known about the cues guiding oviposition behavior. In this study, the effects of both olfactory and contact cues of beans (Phaseolus vulgaris) on oviposition of D. platura females were tested. Egg deposition on germinated beans was preferred to egg deposition on ungerminated beans or on beans in different postgerminating developmental stages. Olfactory cues of germinating beans alone stimulated female flies to lay eggs. Additional contact cues of germinating beans seemed to enhance the response, but the difference was not significant. Surface extracts of germinating beans sprayed on surrogate beans showed that both polar and nonpolar substances stimulated oviposition of D. platura flies. Gas chromatography-electroantennographic detection recordings of head space samples of germinating beans showed positive response of females to different compounds. We conclude that olfaction plays a major role when D. platura females are searching for oviposition sites. Volatile compounds released from germinating beans such as 4-hydroxy-4-methyl-2-pentanone, 1-hepten-3-one, 1-octen-3-ol, and 3-octanone should be considered as key compounds that mediate oviposition behavior. The use of different sensory modalities by closely related species of Delia is discussed.  相似文献   

19.
Maize, a genetically diverse crop, is the domesticated descendent of its wild ancestor, teosinte. Recently, we have shown that certain maize landraces possess a valuable indirect defense trait not present in commercial hybrids. Plants of these landraces release herbivore-induced plant volatiles (HIPVs) that attract both egg [Trichogramma bournieri Pintureau & Babault (Hymenoptera: Trichogrammatidae)] and larval [Cotesia sesamiae Cameron (Hymenoptera: Braconidae)] parasitoids in response to stemborer egg deposition. In this study, we tested whether this trait also exists in the germplasm of wild Zea species. Headspace samples were collected from plants exposed to egg deposition by Chilo partellus Swinhoe (Lepidoptera: Crambidae) moths and unexposed control plants. Four-arm olfactometer bioassays with parasitic wasps, T. bournieri and C. sesamiae, indicated that both egg and larval parasitoids preferred HIPVs from plants with eggs in four of the five teosinte species sampled. Headspace samples from oviposited plants released higher amounts of EAG-active compounds such as (E)-4,8-dimethyl-1,3,7-nonatriene. In oviposition choice bioassays, plants without eggs were significantly preferred for subsequent oviposition by moths compared to plants with prior oviposition. These results suggest that this induced indirect defence trait is not limited to landraces but occurs in wild Zea species and appears to be an ancestral trait. Hence, these species possess a valuable trait that could be introgressed into domesticated maize lines to provide indirect defense mechanisms against stemborers.  相似文献   

20.
Papilio maackii females prefer a rutaceous plant, Phellodendron amurense, for oviposition, whereas another semi-sympatric Rutaceae feeder, Papilio protenor, never exploits this plant as a host in nature. However, the larvae of both species perform well on this plant in the laboratory. Phellamurin, a flavonoid present in the organic fraction from P. amurense inhibits egg laying by P. protenor. We examined whether phellamurin is involved in the differential acceptance of P. amurense by the two butterflies. The ovipositing females of P. maackii readily accepted P. amurense and a methanolic extract of the foliage, while P. protenor rejected them entirely. However, the aqueous fraction derived from the extract elicited significant oviposition responses of similar levels from the two species. Phellamurin did not induce oviposition behavior in P. protenor females. In contrast, P. maackii was stimulated to oviposit by phellamurin at concentrations exceeding 0.2%. The response was dose-dependent and reached ca. 70% at 2% phellamurin, which is approximately equivalent to its natural abundance in young leaves of P. amurense. Since the aqueous fraction was very stimulatory to both species, the combined effect of phellamurin and the aqueous fraction on oviposition was tested. The addition of phellamurin to the aqueous fraction enhanced the ovipositional activity of P. maackii, but dramatically suppressed the oviposition response of P. protenor even at 0.1% concentration. These results, taken together with those obtained from electrophysiological recordings with foretarsal chemosensilla, indicate that phellamurin acts as an oviposition stimulant for P. maackii, and as a potent deterrent for P. protenor. The results suggest that host range expansion or host shifts may be made by ovipositing females that overcome phytochemical barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号