首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High foliar phenolics are generally assumed to increase resistance to insect herbivores, but recent studies show that tobacco lines modified to over– and underexpress phenolics do not exhibit higher constitutive resistance to caterpillars. This is contrary to the expectation that ingestion of tobacco phenolics, particularly chlorogenic acid, should cause oxidative stress in herbivores. We investigated free radical production and antioxidant capacity of fresh crushed leaves of tobacco lines exhibiting over a sixfold difference in chlorogenic acid content to test whether high phenolic concentrations are associated with increased production of reactive oxygen species (ROS). The effects of in planta phenolic levels on feeding behavior, growth, biochemical markers of oxidative stress, and the antioxidant capacity of midgut fluid and hemolymph were assessed in tobacco budworm, Heliothis virescens. The experiments showed that high phenolic foliage was more prooxidant than low phenolic foliage, but the net balance in crushed tissue was antioxidant in comparison to buffer and the commercial antioxidant standard, Trolox. In H. virescens, the antioxidant capacity of midgut fluid was also powerful, and caterpillars fed high phenolic foliage did not exhibit the expected markers of oxidative stress in midgut tissues (altered ascorbate ratios, disulfides, or total hydroperoxides). Instead, hemolymph of larvae fed high phenolic foliage exhibited improved total Trolox equivalent antioxidant capacity (TEAC). These results suggest that the elevated foliar phenolics in some plants may have beneficial antioxidant properties for herbivorous insects, much as dietary phenolics do in mammals.  相似文献   

2.
Oxidative responses of plants to pathogens and other environmental stresses have received considerable recent attention. We propose that an oxidative response also occurs following attack by herbivores. Our data strongly indicate a shift in the oxidative status of soybean following herbivory by the insectHelicoverpa zea. Herbivory caused significant increases in lipid peroxidation and ·OH radical formation. The activity of several oxidative enzymes including lipoxygenases, peroxidase, diamine oxidase, ascorbate oxidase, and NADH oxidase I increased after herbivory on soybean. The enhanced production of phenolic compounds is indicated by an increase in the activity of phenylalanine ammonia lyase in wounded tissues. On the other hand, the level of soybean foliar antioxidants such as ascorbic acid, total carotenoids, nonprotein thiols, and catalase decreased significantly following herbivory. These results implicate primary compounds (e.g., ascorbic acid, proteins), secondary metabolites (e.g., phenolics), and reactive oxygen species (e.g., hydroxyl radical, hydrogen peroxide) as multiple components of induced resistance. The oxidative changes in the host plant correspond with increased oxidative damage in the midgut of insects feeding on previously wounded plants. Decreases in nonprotein thiols and reduced ascorbic acid occurred in midgut epithelial tissue from insects feeding on wounded plants compared to the insects on control plants. In contrast, midgut hydroperoxides and dehydroascorbic acid concentrations were greater in insects on wounded plants compared to their counterparts on control plants. We conclude that oxidative responses in soybean may have both positive and negative effects upon the host plant: a decrease in herbivory and an increase in oxidative damage to the plant. The salient benefit to the plant, in terms of insect resistance, is the relative balance between these opposing effects.  相似文献   

3.
This study investigated the consequences of early season bud herbivory on host-plant phytochemistry and subsequent effects on a later mid-season leaf-feeding herbivore, to test the hypothesis that temporally segregated interguild interactions could affect herbivore success through plant-mediated responses. Our system consisted of American bass wood, Tilia americana, a bud-feeding thrips species, Thrips calcaratus, and the folivorous gypsy moth, Lymantria dispar. The impact of thrips bud-feeding on American basswood foliar chemistry and subsequent effects on gypsy moth larval preference and performance were measured. Foliar total nonstructural carbohydrates increased and phenolic levels decreased in response to bud injury, which affected larval feeding preference. In a two-choice test, gypsy moth larvae preferred leaf discs with high carbohydrate and low phenolic levels. The effects on larval performance depended on the extent of prior bud injury and were correlated with carbohydrate concentrations. In an early season assay, larval performance was lowest on moderately bud-damaged tissue, which also had the lowest total nonstructural carbohydrates. In a mid-season assay, larval performance and carbohydrate concentrations were highest in severely bud-damaged foliage. Foliar phenolics were highest in severely bud-damaged tissue in the early season assay, and in moderately damaged tissue in the mid-season assay. Gypsy moth performance was not correlated with foliar phenolic levels. Secondary (reflushed) foliage had higher carbohydrate levels than did primary (original) foliage, which correlated with increased larval performance. This study illustrates that bud-feeding herbivores can alter the phytochemistry and subsequent suitability of host-plant foliage for later folivores. The implications of these results to interactions between feeding guilds, community structure, and forest health are discussed.  相似文献   

4.
Variation in induced responses in soybean is shown to be dependent, in part, upon herbivore species. Herbivory by the phloem-feeding three-cornered alfalfa hopper caused increases in the activities of several oxidative enzymes including lipoxygenases, peroxidases, ascorbate oxidase, and polyphenol oxidase. Bean leaf beetle defoliation caused increased lipoxygenase activity, but had little effect upon peroxidase, polyphenol oxidase, ascorbate oxidase, or trypsin inhibitor levels in either field or greenhouse studies. In one field experiment, prior herbivory by the bean leaf beetle subsequently reduced the suitability of foliage to the corn earwormHelicoverpa zea. The contribution of these findings to emerging theories of insect-plant interactions is discussed.  相似文献   

5.
In this study, we used plant vascular architecture as a framework from which to predict induced changes in resource quality for Lema trilinea feeding on the host plant Solanum dulcamara at both low and high levels of herbivory. The systemic patterns of allocation of dye from a capillary tube inserted onto the petiole of the first true leaf and sections of the stem were used to establish the degree of vascular connectivity among different leaf positions. Induced changes in the activity of two defensive proteins, proteinase inhibitor (PI) and polyphenol oxidase (PPO), as well as larval L. trilinea performance, were measured in weakly or strongly connected leaves on plants with the first leaf damaged or undamaged by adult L. trilinea. At high levels of herbivory, larval performance decreased on the sixth leaf, which has strong vascular connections to the first leaf, yet increased on the fifth leaf, which has weak vascular connections to the first leaf. PPO activity increased in both the fifth and sixth leaf, while PI activity decreased in the fifth leaf although remaining unchanged in the sixth leaf. At low levels of herbivory, a decrease in larval performance was observed in the sixth leaf, but no change occurred in the weakly connected fifth leaf. Hence, plant vascular architecture clearly predicted within-plant changes in resource quality following only small amounts of herbivore damage.  相似文献   

6.
Ascorbic acid is essential for both nutritive and antioxidant functions in phytophagous insects; however, maintaining sufficient quantities of reduced ascorbate may be problematical for them. In this investigation, we show that the plant enzyme ascorbate oxidase retains activity in the digestive system of the herbivoreHelicoverpa zea. High levels of the enzyme are present in several host plants ofH. zea, including cotton, tomato, soybean, crimson clover, and vetch. The enzyme oxidizesL-ascorbic acid to dehydro-L-ascorbic acid, a potentially toxic product. The oxidation of ascorbic acid also produces active oxygen species such as the highly reactive hydroxyl radical. The nutritional quality of protein for larvalH. zea was significantly reduced by treatment with ascorbate and ascorbate oxidase. Oxidative damage to the protein was indicated by decreased lysine content, increased carbonyl formation, and the occurrence of protein fragmentation and polymerization. Furthermore, the oxidative loss of ascorbate in the herbivore's digestive system prevents ascorbate from functioning as an important antioxidant against a plethora of dietary prooxidants.  相似文献   

7.
The effect of both caterpillar herbivory and artificial damage on phenylalanine ammonia lysase (PAL) activity of birch foliage was measured, using an intact cell assay. After artificial damage there was a small increase in PAL activity in damaged leaves but no change in adjacent undamaged ones. Insect grazing produced a larger increase in PAL activity, and the enzyme activity was also increased in adjacent undamaged leaves. Artificial damage increased the phenolic levels of the damaged leaves. Insect grazing caused a larger, longer-lasting increase in phenolic levels and also elevated phenolic levels in undamaged leaves. The possible role of these wound-induced biochemical changes in birch is discussed.  相似文献   

8.
Our previous study indicated that insect herbivory on cotton induced resistance to the cotton bollworm (Helicoverpa zea). Here we examine the role of salicylic acid as a signal in cotton for the induced resistance. Abundant evidence has accumulated showing that salicylic acid plays a key role in coordinating the expression of systemic acquired resistance against phyto-pathogens. We report that herbivory results in significant increases in foliar salicylic acid and H2O2, a response frequently observed following pathogenesis. In other well-studied systems (e.g., tobacco), salicylic acid inhibits the enzymatic decomposition of H2O2 by catalase and ascorbate peroxidase, but in cotton, salicylic acid has no effect on these enzymes in vitro. Furthermore, while herbivory enhances foliar catalase and ascorbate peroxidase activities, the application of salicylic acid or methyl salicylate to cotton plants does not affect foliar resistance to H. zea. The possible role of salicylic acid as a signal for induced resistance is discussed in light of these findings.  相似文献   

9.
Most studies on plant–herbivore interactions focus on either root or shoot herbivory in isolation, but above- and belowground herbivores may interact on a shared host plant. Cotton (Gossypium spp.) produces gossypol and a variety of other gossypol-like terpenoids that exhibit toxicity to a wide range of herbivores and pathogens. Cotton plants also can emit herbivore-induced volatile compounds at the site of damage and systemically on all tissues above the site of damage. As these volatile compounds attract natural enemy species of the herbivore, they are thought to represent an indirect plant defense. Our study quantified gossypol and gossypol-like compounds in cotton plants with foliage feeding (Heliocoverpa zea), root feeding (Meloidogyne incognita), or their combination. Cotton plants with these treatments were studied also with respect to induced local and systemic volatile production and the attraction of the parasitic wasp Microplitis croceipes to those plants. We also evaluated whether foliage or root feeding affected foliar nitrogen levels in cotton. After 48 hr of leaf feeding and 5 wk of root feeding, local and systemic induction of volatiles (known to attract parasitoids such as M. croceipes) occurred with herbivore damage to leaves, and it increased in levels when root herbivory was added. Nevertheless, M. croceipes were equally attracted to plants with both leaf and root damage and leaf damage only. In contrast to previous studies in cotton, production of gossypol and gossypol-like compounds was not induced in leaf and root tissue following foliage or root herbivory, or their combination. We conclude that root feeding by M. incognita has little influence on direct and indirect defenses of Gossypium hirsutum against insect herbivory.  相似文献   

10.
Resistance in soybean toHelicoverpa zea is comprised of both constitutive and inducible factors. In this study, we investigated the induction of resistance byH. zea in both greenhouse and field studies. In a greenhouse experiment, fourth-instarH. zea growth rates were reduced by 39% after 24 hr feeding and by 27% after 48 hr when larvae fed on previously wounded V3 foliage (cv. Forrest) compared with undamaged foliage. In a field study, the weight gain by larvae was more than 52% greater when larvae fed for 72 hr on undamaged R2/R3 soybean plants (cv. Braxton) compared to those that fed on previously wounded plants. A significant component of the induced resistance is due to a decline in the nutritional quality of foliar protein following foliar damage byH. zea. Foliar protein was extracted from damaged and undamaged foliage and incorporated into artificial diets. Larval growth was reduced 26% after four days and 49% after seven days on diets containing protein from damaged plants compared to larvae feeding on foliar protein from undamaged plants. Chemical analyses of protein quality also indicated a decline in quality in damaged plants compared to unwounded plants. Increases in lipoxygenase activity (53%), lipid peroxidation products (20%), and trypsin inhibitor content (34%) were observed in protein from wounded plants. Moreover, a 5.9% loss in free amines and 19% loss in total thiols occurred in protein from wounded plants. Larval feeding causes a significant increase in foliar lipoxygenase activity that varied among genotypes. Lipoxygenase isozymes were measured at pH 5.5, pH 7.0, and pH 8.5 in V3 stage plants of Forrest, Hark, D75-1069, and PI 417061 genotypes. Lipoxygenase activity in each genotype was significantly increased after 72 hr of larval feeding at each pH level tested, with the exception of lipoxygenase isozymes at pH 5.5 in genotype PI 417061. Larval feeding on R2/R3 stage plants (field-grown cv. Braxton) for six days also increased foliar lipoxygenase activity.  相似文献   

11.
Herbivore-induced responses in alfalfa (Medicago sativa)   总被引:4,自引:0,他引:4  
The herbivore-induced response of alfalfa (Medicago sativa) was examined through assays with Spodoptera littoralislarvae and analyses of important secondary substances. In food preference experiments, larvae preferred young undamaged alfalfa plants over plants that had been damaged by feeding larvae 5 and 7 days earlier, while no difference in feeding preferences could be detected 1, 9, and 14 days after damage. This suggests a peak in the herbivore induced resistance of alfalfa approximately one week after initial damage. The induced resistance in young plants was also shown to be systemic, while older flowering plants failed to show increased resistance after defoliation. Larvae gained weight slower and had lower pupal mass when fed damaged alfalfa than when fed undamaged alfalfa. Levels of total saponins were increased in foliage of damaged alfalfa, and detailed analyses of specific saponin components revealed doubled concentrations of 3GlcA,28AraRhaXyl medicagenate (medicagenic acid bidesmoside) and 3GlcAGalRha soyasapogenol B (soyasaponin I). Levels of the flavonoid apigenin (as free aglycone) also were increased in herbivore damaged plants. The herbivore-induced response of alfalfa was significantly weaker than that of cotton: S. littoralis larvae given a choice of undamaged cotton and undamaged alfalfa preferred to feed on cotton, whereas preferences shifted towards alfalfa when plants were damaged.  相似文献   

12.
The foliage and fruit of the tomato plantLycopersicon esculentum contains polyphenol oxidases (PPO) and peroxidases (POD) that are compartmentally separated from orthodihydroxyphenolic substrates in situ. However, when leaf tissue is damaged by insect feeding, the enzyme and phenolic substrates come in contact, resulting in the rapid oxidation of phenolics to orthoquinones. When the tomato fruitwormHeliothis zea or the beet army-wormSpodoptera exigua feed on tomato foliage, a substantial amount of the ingested chlorogenic acid is oxidized to chlorogenoquinone by PPO in the insect gut. Additionally, the digestive enzymes of the fruitworm have the potential to further activate foliar oxidase activity in the gut. Chlorogenoquinone is a highly reactive electrophilic molecule that readily binds cova-lently to nucleophilic groups of amino acids and proteins. In particular, the —SH and —NH2 groups of amino acids are susceptible to binding or alkylation. In experiments with tomato foliage, the relative growth rate of the fruitworm was negatively correlated with PPO activity. As the tomato plant matures, foliar PPO activity may increase nearly 10-fold while the growth rate of the fruitworm is severely depressed. In tomato fruit, the levels of PPO are highest in small immature fruit but are essentially negligible in mature fruit. The growth rate of larvae on fruit was also negatively correlated with PPO activity, with the fastest larval growth rate occurring when larvae fed on mature fruit. The reduction in larval growth is proposed to result from the alkylation of amino acids/protein byo-quinones, and the subsequent reduction in the nutritive quality of foliage. This alkylation reduces the digestibility of dietary protein and the bioavailability of amino acids. We believe that this mechanism of digestibility reduction may be extrapolatable to other plant-insect systems because of the ubiquitous cooccurrence of PPO and phenolic substrates among vascular plant species.  相似文献   

13.
Studies on induced defenses have predominantly focused on foliar induction by above-ground herbivores and pathogens. However, roots are attacked by as many if not more phytophages than shoots, so in reality plants are exposed to above- and below-ground attack. Here, we report effects of foliar and/or root damage on terpenoid aldehyde accumulation in cotton (Gossypium herbaceum). Using HPLC, we analyzed concentrations of individual terpenoid aldehydes in foliage and root tissue. In undamaged plants, terpenoid aldehydes were concentrated in young immature main leaves. Concentrations in side leaves, branching from the main leaves, did not differ among leaf position. Above-ground feeding by Spodopterta exigua larvae on a mature leaf enhanced terpenoid concentrations in immature leaves but not in the damaged leaf. In particular, concentrations of hemigossypolone and the heliocides 1 and 4 were enhanced following herbivory. Root herbivory by wireworms (Agriotes lineatus) also resulted in an increase in terpenoid levels in the foliage. In contrast with foliar herbivory, both immature and mature leaves were induced. However, the level of induction after root herbivory was much lower compared to foliar herbivory. Plants exposed to root herbivory also had significantly higher levels of terpenoid aldehydes in root tissue, while no such effect was found following foliar herbivory. Plants exposed to both root and foliar herbivory appeared to induce primarily above-ground at the cost of below-ground defense. The implications for above- and below-ground Mutitrophic interactions are discussed.  相似文献   

14.
Induction of systemic resistance to feeding of beet armyworm, Spodoptera exigua, was investigated in two isogenic lines of Stoneville 213 cotton, Gossypium hirsutum, that differed in the presence of pigment glands. In laboratory bioassays, larvae strongly preferred to feed on glandless cotton plants when presented a choice between undamaged terminal leaves of undamaged glanded and glandless plants. Feeding damage inflicted by S. exigua larvae on the two oldest leaves of glanded plants seven days prior to feeding bioassays caused larvae to prefer by 33-fold the undamaged terminal foliage from undamaged plants compared to that from damaged plants. Feeding damage on glandless plants caused only a 2.6-fold greater preference for terminal foliage from undamaged plants over foliage from previously damaged plants. Extracts of terminal foliage from glanded cotton damaged seven days earlier had significantly greater quantities of terpenoid aldehydes (hemigossypolone, gossypol, and heliocides) than did foliage from undamaged glanded plants. Terpenoid aldehydes were undetectable in extracts of both undamaged and previously damaged glandless plants. The profile of volatile compounds collected from the headspace of mechanically damaged terminal leaves of undamaged glanded and glandless plants differed. Both cotton isolines released large quantities of lipoxygenase products (hexenyl alcohols, acetates, and butyrates), but glandless plants released only small amounts of mono- and sesquiterpenes compared to glanded plants. Glandless plants damaged seven days prior to volatile collection released significantly greater quantities of lipoxygenase products, -ocimene, and - and -farnesene than did undamaged glandless plants. Previously damaged glanded plants released significantly greater quantities of all mono- and sesquiterpenes and hexenyl acetates and butyrates, but not alcohols. The relative importance of volatile compounds versus terpenoid aldehydes in induced feeding deterrence in cotton to S. exigua larvae is still unclear.  相似文献   

15.
Theory predicts that plant resistance to herbivores is determined by both genetic and environmentally induced components. In this study, we demonstrate that the phenotypic expression of plant resistance to spider mite herbivory in Cucumis sativus is determined by genetic and environmental factors and that there is an interaction between these factors. Previous feeding by spider mites induced systemic resistance to subsequent attack over several spatial scales within plants, reducing the population growth of mites compared to that on control plants. Effects of induction were effective locally over the short term, but resulted in local increased susceptibility to spider mite attack after several days. However, this local induced susceptibility on the damaged leaf was associated with induced resistance on newer leaves. Induced resistance was correlated with increases in cucurbitacin content of leaves, but was not associated with changes in the density of leaf trichomes. Induced resistance to herbivory was not detected in plants of a genotype lacking constitutive expression of cucurbitacins, which were in general highly susceptibile to mite attack. Allocation trade-offs between growth and defense are often invoked to explain the maintenance of variation in the levels of plant resistance. Contrary to current thinking, neither constitutive nor herbivore-induced plant resistance were associated with reductions in plant allocation to root and shoot growth. However, plants that had high levels of induced resistance to spider mites were the most susceptible to attack by a specialist beetle. Such ecological trade-offs between resistance to generalist herbivores and susceptibility to specialist herbivores may be important in the maintenance of variation of plant resistance traits. In summary, C. sativus exhibits strong genetic variation for constitutive and induced resistance to spider mites, and this variation in resistance is associated with ecological trade-offs.  相似文献   

16.
Plants have been suggested to have an immunological memory comparable to animals. The evidence for this, however, is scarce. In our study with the mountain birch—Epirrita autumnata system, we demonstrated that birches exposed as long as 5 yr to feeding of E. autumnata larvae (delayed induced resistance, DIR), responded more strongly to a new challenge than trees without an herbivory history. Pupal weights remained lower, and the duration of the larval period was prolonged in the DIR trees, although immunity, measured as an encapsulation rate, was not affected. We further demonstrated that the effects of birch phenolics on performance of E. autumnata were different in the exposed (DIR) trees from naive control trees, although we found only one significant change in chemistry. The quercetin:kaemferol ratio was increased in DIR trees, suggesting that herbivory caused oxidative stress in birches. In DIR trees, phenolics, especially hydrolyzable tannins (HTs), affected pupal weights negatively, whereas in control trees, the effects were either nonsignificant or positive. HTs also prolonged the duration of the larval period of females, whereas peroxidase (POD) activity prolonged that of males. We suggest that the causal explanation for the induced resistance was an enhanced oxidation of phenolic compounds from the DIR trees in the larval digestive tract. Phenolic oxidation produces semiquinones, quinones, free radicals, and ROS, which may have toxic, antinutritive, and/or repellent properties against herbivores.  相似文献   

17.
Insect damage changes plant physiology and chemistry, and such changes may influence the performance of herbivores. We introduced larvae of the autumnal moth (Epirrita autumnataBorkh.) on individual branches of its main host plant, mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) to examine rapid-induced plant responses, which may affect subsequent larval development. We measured systemic responses to herbivory by analyzing chemistry, photosynthesis, and leaf growth, as well as effects on larval growth and feeding, in undamaged branches of damaged and control trees. Larvae reared on leaves from intact branches of the herbivore-damaged trees grew faster than those reared on leaves of control trees, indicating systemic-induced susceptibility. Herbivore damage did not lead to systemic changes in levels of primary nutrients or phenolic compounds. The analyses of photosynthetic activity and individual hydrolyzable tannins revealed a reversal of leaf physiology-herbivore defense patterns. On control trees, consumption by E. autumnata larvae was positively correlated with photosynthetic activity; on damaged trees, this correlation was reversed, with consumption being negatively correlated with photosynthetic activity. A similar pattern was found in the relationship between monogalloylglucose, the most abundant hydrolyzable tannin of mountain birch, and leaf consumption. Among the control trees, consumption was positively correlated with concentrations of monogalloylglucose, whereas among herbivore-damaged trees, this correlation was reversed and became negative. Our results suggest that herbivore performance is related to both concentrations of phenolic compounds and photosynthetic activity in leaves. This linkage between herbivore performance, leaf chemistry, and physiology was sensitive to induced plant responses caused by slight herbivore damage.  相似文献   

18.
The effect of oral administration of purified (95%) eicosapentaenoic acid on serum lipids, hepatic peroxisomal enzymes, antioxidant enzymes and lipid peroxidation was compared with that of palmitic acid fed mice and corresponding controls. After 10 d, a dose of 1000 mg eicosapentaenoic acid per day/kg body weight lowered serum triglycerides by 45%, while no significant change in serum cholesterol level was noted in comparison to palmitic acid fed mice and controls. Hepatic acyl-CoA oxidase and catalase activities increased by 50% and 30%, respectively, in the eicosapentaenoic acid fed group. In addition, the hepatic reduced glutathione content and the activities of glutathione transferase, glutathione peroxidase and glutathione reductase, increased significantly during eicosapentaenoic acid treatment. The levels of hepatic lipid peroxides were lower after eicosapentaenoic acid feeding, while no significant change was noted in the palmitic acid fed mice when compared to the controls. Taken together, the present data demonstrate for the first time that at hypolipidemic doses eicosapentaenoic acid feeding i) enhances the hepatic antioxidant defense, and ii) does not cause a significant differential induction of the two peroxisomal enzymes, acyl-CoA oxidase and catalase, as was noted after administration of hypolipidemic peroxisome proliferating compounds, such as clofibrate in rodents.  相似文献   

19.
Two potato genotypes resistant to the Colorado potato beetle (CPB) and three susceptible genotypes were used to investigate the role of total foliar polyphenol oxidase (PPO) on the performance of CPB larvae in long-term feeding assays. A significant positive correlation was found between larval mortality and PPO content in potato foliage. Moreover, a significant negative correlation was also observed between PPO content and larval weight, fecundity, and relative larval growth rate. These results suggest a significant role of PPO in conferring potato resistance to the Colorado potato beetle at least in those clones where the PPO levels were above a certain threshold.  相似文献   

20.
The potential role of the plant enzyme lipoxygenase in host resistance against the corn earwormHelicoverpa zea was examined. Lipoxygenase is present in most of the common host plants ofH. zea, with highest activity in the leguminous hosts such as soybean and redbean. Treatment of dietary proteins with linoleic acid and lipoxygenase significantly reduced the nutritive quality of soybean protein and soy foliar protein. Larval growth was reduced from 24 to 63% depending upon treatment. Feeding byH. zea on soybean plants caused damage-induced increases in foliar lipoxygenase and lipid peroxidation products. Larvae feeding on previously wounded plant tissue demonstrated decreased growth rates compared to larvae feeding on unwounded tissue. Midgut epithelium from larvae feeding on wounded tissues showed evidence of oxidative damage as indicated by significant increases in lipid peroxidation products and losses in free primary amines. The potential role of oxidative and nutritional stress as a plant defensive response to herbivory is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号