首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用非对称外给电子体技术,在环管反应器中加入氢调敏感性好的外给电子体X用于生产丙烯均聚物,在气相反应器中加入共聚合性能较好的外给电子体Y用于生产乙丙橡胶相,在生产过程中不断优化工艺参数,调整两个环管反应器中氢气浓度和气相反应器中共聚聚丙烯中的乙烯含量,使用更适合生产抗冲共聚聚丙烯的DQC602型催化剂,成功开发出高熔体流动速率(MFR)、高抗冲击共聚聚丙烯PPB-MM35-S。采用直接加氢气的方法,PPB-MM35-S的MFR可达35.00 g/10 min。  相似文献   

2.
罗伟 《广州化工》2014,(1):113-115,127
利用环管反应器串连气相反应器,同时加入少量丙烯、乙烯和氢气生产了共聚聚丙烯产品EPS30R,对产品结构性能进行了研究,找出影响产品的性能指标因素,为茂名乙烯聚丙烯共聚产品质量的提升和产品性能的进一步改进打下了坚实的基础。  相似文献   

3.
聚丙烯气相反应器工艺参数的计算和控制   总被引:1,自引:0,他引:1  
以液相本低聚合和气相聚合组合式聚丙烯(PP)装置生产多相共聚PP产品为例,推导出了多相共聚PP生产中气相反应器工艺参数之间的关系式,并讨论了工艺参数对产品性能的影响,通过控制气相反应器的乙烯进料量与气相比,改变产品的抗冲击性能,乙烯含量越高,产品的抗冲击性能越好,刚性越差,无定形二聚物的含量越高,产品的抗冲击性能越好,但刚性相对降低。  相似文献   

4.
《合成树脂及塑料》2005,22(1):84-85
制备乙烯和丙烯的均聚物和共聚物的连续气相聚合方法.其中乙烯、丙烯或含有乙烯和丙烯以及C3-C8的α-单烯烃的混合物在气相聚合反应器的聚合区聚合。反应温度为30-125℃。压力为0.1-10.0MPa。反应在催化剂存在下、含有精细分散聚合物床的气相中进行.为了除去聚合热.将反应气体循环。循环的反应气体离开反应器以后首先通过旋风分离器.为了防止循环气系统中产生聚合物沉积物.  相似文献   

5.
抗冲聚丙烯结构与性能研究   总被引:4,自引:2,他引:4  
对部分国内外抗冲聚丙烯(PP)产品进行了微观形态和结构分析,研究其对材料宏观力学性能的影响。实验结果表明:抗冲PP是一个含有PP均聚物、丙烯与乙烯-丙烯两嵌段共聚物、乙丙橡胶(EPR)、聚乙烯均聚物等的多相体系。EPR的分子序列结构对聚合物抗冲击性能起主要作用。在序列结构中,丙烯、乙烯单体在分子链上的位置交换越频繁,抗冲击性能越得到提高。丙烯序列平均长度的增大对抗冲击性能有一定的削弱作用。  相似文献   

6.
在双环管聚丙烯(PP)装置上,可切换生产无规共聚PP和均聚PP产品,但无规共聚PP产品中乙烯含量过高、转产过程过快以及工艺参数控制不合适等都会导致PP装置的带连接堵塞;根据带连接堵塞的原因,从工艺参数和工艺流程两方面进行了改进。结果表明:采取降低无规共聚PP中乙烯质量分数为3. 0%~3. 5%,转产过程中乙烯含量为零时再调整给电子体加入量、适当调整装置工艺参数等措施,可保证PP装置的长周期稳定运行;在带连接的上游端加装一条冲洗丙烯的管线加快带连接内物料的流速,从而减少带连接堵塞的危险;在第二环管反应器返回第一环管反应器的带连接末端加装一个球阀,可及时地处理带连接堵塞;进一步的改进是在两环管反应器之间加装桥连接,以实现在线处理堵塞的带连接。  相似文献   

7.
郑士录 《广州化工》2007,35(4):75-78
利用环管反应器加气相流化床组合工艺生产了乙烯—丙烯抗冲共聚产品,对产品结构性能进行了研究,产品性能测试结果各项指标达到进口料水平,实现了替代进口专用料,取得了很好的经济效益。  相似文献   

8.
^13C-NMR在抗冲共聚聚丙烯序列结构研究中的应用   总被引:1,自引:0,他引:1  
论述了^13C-NMR在抗冲共聚聚丙烯序列结构研究中的进展。介绍了抗冲共聚聚丙烯N脉谱图及谱图归属和单元组的分布、组成及数均序列长度的计算方法。研究结果表明抗冲共聚聚丙烯主要是由乙丙无规共聚物、乙丙可结晶共聚物(富含乙烯或丙烯均可能存在)和聚丙烯均聚物组成。  相似文献   

9.
分别采用HR催化剂和进口催化剂在25 kg/h的环管中试装置上,制备了高光泽抗冲共聚聚丙烯与透明抗冲共聚聚丙烯,研究了产品的结构与性能。结果表明:HR催化剂的氢调敏感性更好,制备相同熔体流动速率高光泽抗冲共聚聚丙烯和透明抗冲共聚聚丙烯时加入的氢气量更少,提升了生产负荷,均聚聚丙烯等规指数更高,最终产品的相对分子质量分布更窄,产品性能也得到进一步改善。  相似文献   

10.
聚丙烯超高抗冲共聚产品SP179生产和微观分析   总被引:1,自引:0,他引:1  
通过确定气相反应器中的乙烯/乙烯+丙烯和氢气/乙烯的组分,生成较多的乙丙橡胶,使聚丙烯抗冲共聚产品SP179具有较高的抗冲强度.通过对产品的微观分析,指出橡胶相含量、乙烯含量、平均橡胶粒子粒径、橡胶粒子分散情况是影响产品冲击强度的因素.  相似文献   

11.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of polyethylene/polypropylene/poly (ethylene‐co‐propylene) in‐reactor alloys by sequential homopolymerization of ethylene, homopolymerization of propylene, and copolymerization of ethylene and propylene in gas‐phase. Different conditions in the third stage, such as the pressure of ethylene–propylene mixture and the feed ratio of ethylene, were investigated, and their influences on the compositions, structural distribution and properties of the in‐reactor alloys were studied. Increasing the feed ratio of ethylene is favorable for forming random ethylene–propylene copolymer and segmented ethylene–propylene copolymer, however, slightly influences the formation of ethylene‐b‐propylene block copolymer and homopolyethylene. Raising the pressure of ethylene–propylene mixture results in the increment of segmented ethylene–propylene copolymer, ethylene‐b‐propylene block copolymer, and PE fractions, but exerts a slight influence on both the random copolymer and PP fractions. The impact strength of PE/PP/EPR in‐reactor alloys can be markedly improved by increasing the feed ratio of ethylene in the ethylene–propylene mixture or increasing the pressure of ethylene–propylene mixture. However, the flexural modulus decreases as the feed ratio of ethylene in the ethylene–propylene mixture or the pressure of ethylene–propylene mixture increases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2481–2487, 2006  相似文献   

12.
In-reactor blends of polypropylene/poly(ethylene-co-propylene) with complex microstructure, synthesized through different polymerization procedures; two-step (one homopolymerization and one copolymerization under high ethylene concentration) and three-step (with an additional copolymerization step under low ethylene concentration), were characterized by rheological measurements. The effects of a change in the polymerization process on the types and amounts of block copolymers in the blends were evaluated using small amplitude oscillation rheometry in the linear viscoelastic region. The Palierne model in its complete form was employed to model the rheological behavior of the blends. For this analysis the reactor products were separated into xylene cold insoluble (XCI) and xylene cold soluble fractions. Besides, another two copolymer fractions at 80 and 100 °C, which are crystallizable copolymer fractions and contain block copolymers rich in polyethylene and polypropylene, respectively, were separated from XCI fraction by xylene using temperature gradient elution fractionation method. Considering all copolymer fractions as dispersed and the remained fraction (mostly polypropylene) as matrix phase, it was shown that the rheological properties of the blends could not be predicted by Palierne model. It was found that only by considering part of block copolymer fractions having long polypropylene sequences along with polypropylene homopolymer as one phase, the rheological properties of the blends could be predicted by Palierne model. By rheological modeling, it was confirmed that the amounts of copolymers with long polypropylene sequences which are miscible with the matrix are higher in the case of three-step blends and also the elasticity of three-step polymerized blends is higher than two-step polymerized blends.  相似文献   

13.
Blends of isotactic polypropylene (PP), ethylene‐propylene rubber copolymer (EPR), and ethylene‐propylene crystalline copolymer (EPC) can be produced through in situ polymerization processes directly in the reactor and blends with different structure and composition can be obtained. In this work we studied the structure of five reactor‐made blends of PP, EPR, and EPC produced by a Ziegler‐Natta catalyst system. The composition of EPR was related to the ratio between ethylene and propylene used in the copolymerization step. The ethylene content in the EPR was in the range of 50–70 mol %. The crystallization behavior of PP and EPC in the blends was influenced by the presence of the rubber, and some specific interactions between the components could be established. By preparative temperature rising elution fractionation (P‐TREF) analysis, the isolation and characterization of crystalline EPC fractions were made. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2155–2162, 2004  相似文献   

14.
研究了乙丙嵌段共聚聚丙烯(PP-B)管材专用树脂的结构与性能。PP-B具有典型的乙丙嵌段共聚物序列结构,是含有丙烯均聚物(PP-H)、乙丙橡胶(EPR)及可结晶乙丙共聚物的抗冲聚丙烯(PP);其中,均聚物与共聚物比例合理,形成的EPR多、粒径小,对提高冲击强度有利。提高PP-H的质量分数和等规指数,可有效提高PP- B的刚性。PP-B的熔点与PP-H近似;相对分子质量分布较宽,流变性能好;微观与亚微观结构合理,宏观性能优良。  相似文献   

15.
This article reports on a comprehensive study of the reaction kinetics, particle morphology development, and polymer properties of impact polypropylene produced in gas phase with a TiCl4/MgCl2 catalyst. Experiments were conducted over a range of copolymerization times, temperatures, monomer compositions, and hydrogen levels. The catalyst was found to exhibit a decay-type reaction rate for ethylene and propylene, but the presence of both monomers together caused an activation of the catalyst. Copolymer composition was constant over reaction time. Hydrogen was found to reversibly enhance the rate of propylene polymerization but to have no effect on ethylene. Microscopy provided evidence that the copolymer phase segregates from the homopolymer during polymerization. As copolymer content increased, product bulk density decreased because of the presence of sticky material on the particle surface. However, even at 70 wt % copolymer, enough pores were present in the particle to prevent monomer diffusion limitations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3085–3106, 2001  相似文献   

16.
在中试产品开发的基础上聚合理论分别从催化剂的选择、预聚合工艺、共聚釜气相乙烯浓度、乙烯加入量、均聚合量、共聚合量、各釜熔体流动速度、粉末输送性能等方面阐述了聚丙烯抗冲共聚物(ICP)的制备技术。结果认为柔聚合条件加科次序十分重要,要选用活 生寿命长、空隙率高的催化剂、并严格控制气相乙烯浓度。  相似文献   

17.
姜涛  陈伟  赵峰  刘月祥  覃雪 《化工学报》2005,56(12):2342-2345
聚丙烯(PP)质轻、价廉,具有良好的加工性能,应用范围广泛.PP的很多应用领域要求它应具有较好的韧性.均聚PP在低温时变脆,抗冲PP是通过在均聚PP中加入橡胶制备的.对PP以提高其抗冲击强度为目的的改性大多用共混的方法,将PP和两种或两种以上的其他聚合物以机械共混的方法进行混合,得到一种宏观上均匀的聚合物共混物,其性能有一定的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号