首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pores of voltage-gated ion channels are lined by protein loops that determine selectivity and conductance. The relative orientations of these "P" loops remain uncertain, as do the distances between them. Using site-directed mutagenesis, we introduced pairs of cysteines into the P loops of micro1 rat skeletal muscle sodium channels and sought functional evidence of proximity between the substituted residues. Only cysteinyl residues that are in close proximity can form disulfide bonds or metal-chelating sites. The mutant Y401C (domain I) spontaneously formed a disulfide bond when paired with E758C in the P loop of domain II; the same residue, when coupled with G1530C in domain IV, created a high-affinity binding site for Cd2+ ions. The results provide the first specific constraints for intramolecular dimensions of the sodium channel pore.  相似文献   

2.
The marine guanidinium toxins, saxitoxin (STX) and tetrodotoxin (TTX), have played crucial roles in the study of voltage-gated Na+ channels. Because they have similar actions, sizes, and functional groups, they have been thought to associate with the channel in the same manner, and early mutational studies supported this idea. Recent experiments by. Biophys. J. 67:2305-2315) have suggested that the toxins bind differently to the isoform-specific domain I Phe/Tyr/Cys location. In the adult skeletal muscle Na+ channel isoform (microliter), we compared the effects on both TTX and STX affinities of mutations in eight positions known to influence toxin binding. The results permitted the assignment of energies contributed by each amino acid to the binding reaction. For neutralizing mutations of Asp400, Glu755, and Lys1237, all thought to be part of the selectivity filter of the channel, the loss of binding energy was identical for the two toxins. However, the loss of binding energy was quite different for vestibule residues considered to be more superficial. Specifically, STX affinity was reduced much more by neutralizations of Glu758 and Asp1532. On the other hand, mutation of Tyr401 to Cys reduced TTX binding energy twice as much as it reduced STX binding energy. Kinetic analysis suggested that all outer vestibule residues tested interacted with both toxins early in the binding reaction (consistent with larger changes in the binding than unbinding rates) before the transition state and formation of the final bound complex. We propose a revised model of TTX and STX binding in the Na+ channel outer vestibule in which the toxins have similar interactions at the selectivity filter, TTX has a stronger interaction with Tyr401, and STX interacts more strongly with the more extracellular residues.  相似文献   

3.
To investigate the functional role of the cysteine residues present in the spinach ferredoxin-NADP+ oxidoreductase, we individually replaced each of the five cysteine residues with serine using site-directed mutagenesis. All of the mutant reductases were correctly assembled in Escherichia coli except for the C42S mutant protein. C114S and C137S mutant enzymes apparently showed structural and kinetic properties very similar to those of the wild-type reductase. However, C272S and C132S mutations yielded enzymes with a decreased catalytic activity in the ferredoxin-dependent reaction (14 and 31% of the wild type, respectively). Whereas the C132S was fully competent in the diaphorase reaction, the C272S mutant flavoprotein showed a 35-fold reduction in catalytic efficiency with respect to the wild-type enzyme (0.4 versus 14.28 microM-1 s-1) due to a substantial decrease of kcat. NADP+ binding by the C272S mutant enzyme was apparently quantitatively the same (Kd = 37 microM) but qualitatively different, as shown by the differential spectrum. Stopped-flow experiments showed that the enzyme-FAD reduction rate was considerably decreased in the C272S mutant reductase, along with a much lower yield of the charge-transfer transient species. It is inferred from these data that the charge transfer (FAD-NADPH) between the reductase and NADPH is required for hydride transfer from the pyridine nucleotide to flavin to occur with a rate compatible with catalysis.  相似文献   

4.
Local anesthetics (LAs) are noncompetitive antagonists of batrachotoxin (BTX) in voltage-gated Na+ channels. The putative LA receptor has been delineated within the transmembrane segment S6 in domain IV of voltage-gated Na+ channels, whereas the putative BTX receptor is within segment S6 in domain I. In this study, we created BTX-resistant muscle Na+ channels at segment I-S6 (micro1-N434K, micro1-L437K) to test whether these residues modulate LA binding. These mutant channels were expressed in transiently transfected human embryonic kidney 293T cells, and their sensitivity to lidocaine, QX-314, etidocaine, and benzocaine was assayed under whole-cell, voltage-clamp conditions. Our results show that LA binding in BTX-resistant micro1 Na+ channels was reduced significantly. At -100 mV holding potential, the reduction in LA affinity was maximal for QX-314 (by 17-fold) and much less for neutral benzocaine (by 2-fold). Furthermore, this reduction was residue specific; substitution of positively charged lysine with negatively charged aspartic acid (micro1-N434D) restored or even enhanced the LA affinity. We conclude that micro1-N434K and micro1-L437K residues located near the middle of the I-S6 segment of Na+ channels can reduce the LA binding affinity without BTX. Thus, this reduction of the LA affinity by point mutations at the BTX binding site is not caused by gating changes induced by BTX alone. We surmise that the BTX receptor and the LA receptor within segments I-S6 and IV-S6, respectively, may align near or within the Na+ permeation pathway.  相似文献   

5.
6.
The possibility that increases in agonist concentration beyond threshold levels may force changes in the character of high-conductance open states of skeletal muscle nicotinic acetylcholine receptor channels (nAChR) was examined by seeing whether differences in several critical ionic properties of nAChR currents could be detected with changes in agonist level. Single- and bi-ionic whole-cell currents of Na+ and Li+ in voltage-clamped frog (Rana pipiens) muscle fibers were measured during local superfusion of endplates with carbamylcholine (carb) at concentrations of 54 microm (low-carb) and 270 microM (high-carb). Three ionic properties that would be affected by changes in the open-state configuration of channel subunits were tested. First, ion-saturation characteristics. Peak Na+ and Li+ currents in low-carb trials showed sublinear dependence on ion concentrations from 0 to 60 mM with Km values of 78 (Na+) and 49 (Li+) mM and a power function slope of 0. 75 on double-log plot. In contrast, the concentration dependence of Na+ and Li+ currents in high-carb tests was linear through the origin with a power function slope of 1.02. Second, Na+/Li+ selectivity. The ratio of peak Na+ and Li+ currents in low-carb tests varied from 1.86 to 2.28 for ion concentrations of from 20 to 60 mM [mean = 2.02 +/- 0.06 (SEM)] whereas the ratio for high-carb trials ranged from only 1.29 to 1.52 [mean = 1.42 +/- 0.40 (SEM)]. Third, competitive interactions of Na+ and Li+ currents. Equimolar mixtures of Na+ and Li+ in low-carb tests produced bi-ionic inward currents which were never larger than the single-ion Na+ current alone, but bi-ionic currents at the high-carb level were always greater than the single-ion Na+ current, approximating the sum of the single-ion Na+ and Li+ currents in most cases. The results are consistent with a decrease in ion-channel binding at the high-carb level and support the possibility of agonist-induced changes in the high-conductance open-state configuration of nAChR subunits which result in a weakening of constraints on cation movements through the channel.  相似文献   

7.
Dendrotoxin K (DTXK) is a 57-residue protein from mamba venom that blocks certain non-inactivating, voltage-activated K+ currents in neurones. In order to pinpoint the residues responsible for its specificity, structure-activity relations of DTX(K) were investigated by mutagenesis. A previously cloned gene encoding this toxin [Smith et al. (1993) Biochemistry 32, 5692-5697] was used to make single mutations; after expression in Escherichia coli as fusion proteins and enzymatic cleavage of the conjugates isolated from the periplasmic space, nine toxins were purified. Structural analysis of the native DTXK and representative mutants by circular dichroism showed that no significant differences were detectable in their folded structures. The biological activity of the mutants, which contained alterations of positively charged and other amino acids, was determined from their abilities to compete for the binding of 125I-labeled DTX(K) to K+ channels in synaptic plasma membranes from rat cerebral cortex. Mutants with residues substituted in the alpha-helix near the C-terminus (R52A or R53A) yielded binding parameters similar to those of wild-type and native DTX(K). In the case of the beta-turn (residues 24-28), however, altering single amino acids reduced binding to the high-affinity site of K+ channels, with the rank order of decreases being K26A > W25A > K24A = K28A. Also, substitutions made in the 3(10)-helix (residues 3-7), a region located close to the beta-turn, produced equivalent effects (K3A > K6A). Thus, it is deduced that residues in the distorted beta-turn and neighboring 3(10)-helix of DTX(K) are critical for its interaction with neuronal K+ channels.  相似文献   

8.
The effects of batrachotoxin (BTX) on cloned alpha-subunit Na+ channels were examined in CHO-K1 cells (a chinese hamster ovary cell line) transfected with rat brain NaIIA cDNA. Under whole-cell patch clamp conditions, BTX shifted the voltage dependence of the activation process by about 45 mV towards the hyperpolarizing direction and eliminated the inactivating phase of Na+ currents. Repetitive depolarizations greatly facilitated the binding of BTX with NaIIA channels while the membrane was held at -100 mV. In chloramine-T-pretreated cells, the association rate of BTX binding with the NaIIA channel was 6.5-fold faster than that in untreated cells. The estimated association rate constant for BTX binding with the open form of NaIIA channel was 1.11 x 10(6) mol-1.s-1 at room temperature. BTX-modified NaIIA channels were blocked by tetrodotoxin (TTX) in a complicated manner. First, the TTX binding to the closed state of BTX-modified NaIIA channels was not voltage dependent. The KD value of TTX was measured at 8.9 nM, which was similar to that of unmodified channels (KD = 14.2 nM). Second, the block of the open state of BTX-modified NaIIA channels by TTX was voltage dependent; depolarization reduced the potency of TTX block between -20 mV to +50 mV. Below -30 mV, the TTX affinity began to level off, probably because of the increased presence of the closed state. Unexpectedly, steady-state inactivation of BTX-modified NaIIA channels was minimal as measured by the two-pulse protocol, a phenomenon distinctly different from that found in GH3 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In order to identify charged amino-acid residues of the cloned rat brain neurotensin (NT) receptor (NTR) that are critical for NT binding, we performed site-directed mutagenesis on the cDNA encoding this protein, followed by transient expression into mammalian COS-7 cells and in Xenopus laevis oocytes. Point substitutions of charged residues in the N-terminal part and in the 2nd and 3rd extracellular loop of the receptor either did not affect (125)I-Tyr3-NT binding or resulted in a decrease in binding affinity by a factor of 2-3. Mutations of amino acids Asp113 in the second transmembrane domain (TM) and of Arg149 or Asp150 in TM III yielded receptors that bound NT as efficiently as the native receptor. By contrast, replacement of the Asp139 residue in the 1st extracellular loop, or of Arg143 or Arg327-Arg328 residues at the top of TM III and in TM VI, respectively, completely abolished ligand binding. Confocal and EM immunocytochemical studies of the expression of these affected receptors, tagged with the C-terminal sequence of the vesicular stomatitis virus glycoprotein (VSV-G), indicated that this loss of binding was not due to altered receptor expression or to their improper insertion into the plasma membrane. When these mutated forms of neurotensin receptor were expressed into Xenopus oocytes, Asp139-Gly- and Arg143-Gly-modified receptors remained functional in spite of a lowered response to NT whereas the Arg327-Arg328 mutant form was totally insensitive to NT at concentrations up to 10 microM. In the case of the Arg327-Arg328 mutation, the observed insensibility to NT could be the result of a drastic conformational alteration of this mutant protein. By contrast, it would appear that Asp139 and Arg143 residues located in the first extracellular loop of the receptor may be directly involved in the interaction of the receptor with neurotensin.  相似文献   

10.
Random mutagenesis with ouabain selection has been used to comprehensively scan the extracellular and transmembrane domains of the alpha1 subunit of the sheep Na+/K+-ATPase for amino acid residues that alter ouabain sensitivity. The four random mutant libraries used in this study include all of the transmembrane and extracellular regions of the molecule as well as 75% of the cytoplasmic domains. Through an extensive number of HeLa cell transfections of these libraries and subsequent ouabain selection, 24 ouabain-resistant clones have been identified. All previously described amino acids that confer ouabain resistance were identified, confirming the completeness of this random mutagenesis screen. The amino acid substitutions that confer the greatest ouabain resistance, such as Gln111-->Arg, Asp121-->Gly, Asp121-->Glu, Asn122-->Asp, and Thr797-->Ala were identified more than once in this study. This extensive survey of the extracellular and transmembrane regions of the Na+/K+-ATPase molecule has identified two new regions of the molecule that affect ouabain sensitivity: the H4 and the H10 transmembrane regions. The new substitutions identified in this study are Leu330-->Gln, Ala331-->Gly, Thr338-->Ala, and Thr338-->Asn in the H4 transmembrane domain and Phe982-->Ser in the H10 transmembrane domain. These substitutions confer modest increases in the concentration of cardiac glycoside needed to produce 50% inhibition of activity (IC50 values), 3.1-7.9-fold difference. The results of this extensive screening of the Na+/K+-ATPase alpha1 subunit to identify amino acids residues that are important in ouabain sensitivity further supports our hypothesis that the H1-H2 and H4-H8 regions represent the major binding sites for the cardiac glycoside class of drugs.  相似文献   

11.
Phenytoin, carbamazepine, and lamotrigine are anticonvulsants frequently prescribed in seizure clinics. These drugs all show voltage-dependent inhibition of Na+ currents, which has been implicated as the major mechanism underlying the antiepileptic effect. In this study, I examine the inhibition of Na+ currents by mixtures of different anticonvulsants. Quantitative analysis of the shift of steady state inactivation curve in the presence of multiple drugs argues that one channel can be occupied by only one drug molecule. Moreover, the recovery from inhibition by a mixture of two drugs (a fast-unbinding drug plus a slow-unbinding drug) is faster, or at least not slower, than the recovery from inhibition by the slow-unbinding drug alone. Such kinetic characteristics further strengthen the argument that binding of one anticonvulsant to the Na+ channel precludes binding of the other. It also is found that these anticonvulsants are effective inhibitors of Na+ currents only when applied externally, not internally. Altogether these findings suggest that phenytoin, carbamazepine, and lamotrigine bind to a common receptor located on the extracellular side of the Na+ channel. Because these anticonvulsants all have much higher affinity to the inactivated state than to the resting state of the Na+ channel, the anticonvulsant receptor probably does not exist in the resting state. Thus, there may be correlative conformational changes for the making of the receptor on the extracellular side of the channel during the gating process.  相似文献   

12.
High-affinity mu-conotoxin block of skeletal muscle Na+ channels depends on an arginine at position 13 (Arg-13). To understand both the mechanism of toxin interaction and the general structure of its binding site in the channel mouth, we examined by thermodynamic mutant cycle analysis the interaction between the critical Arg-13 and amino acid residues known to be in the channel's outer vestibule. Arg-13 interacts specifically with domain II Glu-758 with energy of about -3.0 kcal/mol, including both electrostatic and nonelectrostatic components, and with Glu-403 with energy of about -2.0 kcal/mol. Interactions with the other charged residues in the outer vestibule were shown to be almost entirely electrostatic, because these interactions were maintained when Arg-13 was replaced by lysine. These results place the bound Arg-13 at the channel mouth adjacent to the P (pore) loops of domains I and II. Distance estimates based on interaction energies suggest that the charged vestibule residues are in relative positions similar to those of the Lipkind-Fozzard vestibule model [Lipkind, G. M., and Fozzard, H. A. (1994) Biophys. J. 66, 1-13]. Kinetic analysis suggests that Arg-13 interactions are partially formed in the ligand-channel transition state.  相似文献   

13.
In myotonic muscular dystrophy, abnormal muscle Na currents underlie myotonic discharges. Since the myotonic muscular dystrophy gene encodes a product, human myotonin protein kinase, with structural similarity to protein kinases, we tested the idea that human myotonin protein kinase modulates skeletal muscle Na channels. Coexpression of human myotonin protein kinase with rat skeletal muscle Na channels in Xenopus oocytes reduced the amplitude of Na currents and accelerated current decay. The effect required the presence of a potential phosphorylation site in the inactivation mechanism of the channel. The mutation responsible for human disease, trinucleotide repeats in the 3' untranslated region, did not prevent the effect. The consequence of an abnormal amount of the kinase would be altered muscle cell excitability, consistent with the clinical finding of myotonia in myotonic dystrophy.  相似文献   

14.
To investigate the relationship among fibre type, oxidative potential, and Na(+)-K+ ATPase concentration in skeletal muscle, adult male Wistar rats weighing 259 +/- 8 g (mean +/- SE) were sacrificed and the soleus (SOL), extensor digitorum longus (EDL), red vastus lateralis (RV), and white vastus lateralis (WV) removed. These muscles were chosen as being representative of the two major fibre type populations: slow twitch (SOL) and fast twitch (EDL, RV, WV) and exhibiting either a high (SOL, EDL, RV) or low (WV) oxidative potential. Na(+)-K+ ATPase concentration (pmol.g-1 wet weight), measured by the [3H]ouabain binding technique, differed (p < 0.01) only between the WV (238 +/- 7.9) and the SOL (359 +/- 9.6), EDL (365 +/- 10), and RV (403 +/- 12). Similarly, muscle oxidative potential as measured by the maximal activity of citrate synthase was different (p < 0.01) only between the WV and the other three muscles. Citrate synthase activity (mumol.min-1.g-1 wet weight) was 4.0 +/- 0.7, 12.3 +/- 0.9, 9.1 +/- 0.7, and 11.3 +/- 1.0 in the WV, SOL, EDL, and RV, respectively. These results indicate that Na(+)-K+ ATPase concentration is not related to the speed of contraction but to the oxidative potential of the muscle. Since chronic activity is a primary determinant of oxidative potential, it would be expected that increases in Na(+)-K+ ATPase would accompany increases in muscle utilization.  相似文献   

15.
During inactivation of Na+ channels, the intracellular loop connecting domains III and IV is thought to fold into the channel protein and occlude the pore through interaction of the hydrophobic motif isoleucine-phenylalanine-methionine (IFM) with a receptor site. We have searched for amino acid residues flanking the IFM motif which may contribute to formation of molecular hinges that allow this motion of the inactivation gate. Site-directed mutagenesis of proline and glycine residues, which often are components of molecular hinges in proteins, revealed that G1484, G1485, P1512, P1514, and P1516 are required for normal fast inactivation. Mutations of these residues slow the time course of macroscopic inactivation. Single channel analysis of mutations G1484A, G1485A, and P1512A showed that the slowing of macroscopic inactivation is produced by increases in open duration and latency to first opening. These mutant channels also show a higher probability of entering a slow gating mode in which their inactivation is further impaired. The effects on gating transitions in the pathway to open Na+ channels indicate conformational coupling of activation to transitions in the inactivation gate. The results are consistent with the hypothesis that these glycine and proline residues contribute to hinge regions which allow movement of the inactivation gate during the inactivation process of Na+ channels.  相似文献   

16.
Excitation-contraction coupling in skeletal muscle requires the release of intracellular calcium ions (Ca2+) through ryanodine receptor (RyR1) channels in the sarcoplasmic reticulum. Half of the RyR1 channels are activated by voltage-dependent Ca2+ channels in the plasma membrane. In planar lipid bilayers, RyR1 channels exhibited simultaneous openings and closings, termed "coupled gating." Addition of the channel accessory protein FKBP12 induced coupled gating, and removal of FKBP12 uncoupled channels. Coupled gating provides a mechanism by which RyR1 channels that are not associated with voltage-dependent Ca2+ channels can be regulated.  相似文献   

17.
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.  相似文献   

18.
BACKGROUND: We previously demonstrated that vasopressin (AVP) produces a sustained increase in Na+ reabsorption by the isolated perfused cortical collecting duct (CCD) from rats on a normal diet, and that this effect is synergistic with that of pharmacological doses of deoxycorticosterone (DOC) or physiological levels of aldosterone. The present experiments examined the effect of AVP under the more physiological circumstances when plasma aldosterone was elevated by prior volume depletion. METHODS: Rats were volume depleted by a single dose of furosemide followed by a low-salt diet (0.3% NaCl) for four to nine days. Some of these rats were also implanted with a pellet containing 2.5 mg DOC. Rats in a third group were not injected with furosemide but were implanted with the DOC pellet and maintained on a standard (approximately 1% NaCl) diet. CCD were perfused and the lumen-to-bath Na+ flux (JNA), transepithelial voltage (VT), and osmotic water permeability (Pf) were measured in the presence and absence of 200 pm AVP. RESULTS: Although Na+ depletion by a single injection of furosemide and the low salt diet elevated plasma aldosterone and Vt, JNA remained low and there was a decreased response to AVP in comparison with DOC-treated rats on a standard diet. In CCD from rats on the low salt-diet with DOC, JNa was less than observed in CCD from DOC-treated rats on a standard diet. AVP-dependent Pf in CCD from rats on the low salt-diet, with or without DOC treatment, was also markedly lower. CONCLUSIONS: We interpret the results to demonstrate that maximal rates of Na+ reabsorption in the CCD depend not only on the synergistic stimulatory effects of aldosterone and AVP, but also require normal to high rates of salt delivery in vivo for the effects of the hormones on Na+ transport to be maximized in vitro.  相似文献   

19.
beta2-Glycoprotein I (beta2GPI) is a phospholipid-binding serum protein with anticoagulant properties. It plays a vital role in the binding of anti-cardiolipin Abs purified from patients with autoimmune disease when assayed in a cardiolipin (CL) ELISA. Based on a three-dimensional model of beta2GPI, electrostatic calculations, and earlier peptide studies, a highly positively charged amino acid sequence, Lys282-Asn-Lys-Glu-Lys-Lys287, located in the fifth domain of beta2GPI, has been predicted to be the phospholipid binding site. We tested this hypothesis by site-directed mutagenesis of residues in the predicted phospholipid binding site and by assessing the mutants for phospholipid binding and anti-beta2GPI activity. A single amino acid change from Lys286 to Glu significantly decreased the binding of beta2GPI to CL. Double and triple mutants 2k (from Lys286, 287 to Glu286, 287), 2ka (from Lys284, 287 to Glu284, 287), and 3k (from Lys284, 286, 287 to Glu284, 286, 287) possessed no binding of Ab to beta2GPI in a CL ELISA, as well as no inhibitory activity on the binding of iodinated native beta2GPI to CL. These results indicate that the residues Lys284, Lys286, and Lys287 in the fifth domain of beta2GPI are critical for its binding to anionic phospholipids and its subsequent capture for binding of anti-beta2GPI Abs.  相似文献   

20.
1. Whole cell patch clamp techniques were used to study the effects of 4030W92 (2,4-diamino-5-(2,3-dichlorophenyl)-6-fluoromethylpyrimidine), a new antihyperalgesic agent, on rat dorsal root ganglion (DRG) neurones. 2. In small diameter, presumably nociceptive DRG neurones under voltage-clamp, 4030W92 (1-100 microM) produced a concentration-related inhibition of slow tetrodotoxin-resistant Na+ currents (TTXR). From a holding potential (Vh) of -90 mV, currents evoked by test pulses to 0 mV were inhibited by 4030W92 with a mean IC50 value of approximately 103 microM. 3. The inhibitory effect of 4030W92 on TTX(R) was both voltage- and use-dependent. Currents evoked from a Vh of -60 mV were inhibited by 4030W92 with a mean IC50 value of 22 microM, which was 5 fold less than the value obtained at -90 mV. Repeated activation of TTX(R) by a train of depolarizing pulses (5 Hz, 20 ms duration) enhanced the inhibitory effects of 4030W92. These data could be explained by a preferential interaction of the drug with inactivation states of the channel. In support of this hypothesis 4030W92 (30 microM) produced a significant hyperpolarizing shift of 10 mV in the slow inactivation curve for TTX(R) and markedly slowed the recovery from channel inactivation. 4. Fast TTX-sensitive Na+ currents (TTXs) were also inhibited by 4030W92 in a voltage-dependent manner. The IC50 values obtained from Vhs of -90 mV and -70 mV were 37 microM and 5 microM, respectively. 4030W92 (30 microM) produced a 13 mV hyperpolarizing shift in the steady-state inactivation curve of TTXs. 5. High threshold voltage-gated Ca2+ currents were only weakly inhibited by 4030W92. The reduction in peak Ca2+ current amplitude produced by 100 microM 4030W92 was 20+/-6% (n=6). Low threshold T-type Ca2+ currents were inhibited by 17+/-8% and 43+/-3% by concentrations of 4030W92 of 30 microM and 100 microM, respectively (n=6). 6. Under current clamp, some cells exhibited broad TTX-resistant action potentials whilst others showed fast TTX-sensitive action potentials in response to a depolarizing current injection. In most cells a long duration (800 ms) supramaximal current injection evoked a train of action potentials. 4030W92 (10-30 microM) had little effect on the first spike in the train but produced a concentration-related inhibition of the later spikes. The number of spikes per train was significantly reduced from 9.7+/-1.5 to 4.2+/-1.0 and 2.6+/-1.1 in the presence of 10 microM and 30 microM 4030W92, respectively (n=5). 7. Thus, 4030W92 is a potent voltage- and use-dependent inhibitor of Na+ channels in sensory neurones. This profile can be explained by a preferential action of the drug on a slow inactivation state of the channel that results in a delayed recovery to the resting state. This state-dependent modulation by 4030W92 of Na+ channels that are important in sensory neurone function may underlie or contribute to the antihyperalgesic profile of this compound observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号