首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu nanotubes and nanowires were fabricated by electroless deposition using porous aluminum oxide membrane as template in coating bath at room temperature. The images of Cu nanotubes and nanowires are obtained by transmission electron microscopy (TEM). X-ray diffractometry (XRD) is employed to study the morphology. Results indicate that the success of fabrication depends on the reducing process of pore treatment. The outer diameter of Cu nanotubes can be controlled by adjusting the aperture of anodic alumina membranes (AAM) template, and the thickness of the tube wall can be controlled by deposition time. The morphology of Cu nanotubes and nanowires are polycrystalline. Translated from Metallic Functional Materials, 2006, 13(5): 1–4 (in Chinese)  相似文献   

2.
Gang Li 《Inorganic Materials》2010,46(10):1072-1076
The Ni catalyst films were deposited on single crystal Si by magnetron sputtering system. The surface morphologies of the films were controlled by varying the pretreatment temperature in NH3. We have investigated how the morphology of Ni after thermal treatment influences on the vertically aligned carbon nanotubes growth during thermal chemical vapor deposition. We found that the pretreatment temperature determined the grain size and density of the Ni catalyst that controlled the diameter, length, and density of carbon nanotubes. The degree of crystallization and order of the CNTs as a function of pretreatment temperature was further discussed by Raman spectrums. We found that more aligned and ordered samples correspond to lower I D/I G ratios.  相似文献   

3.
采用化学气相沉积(CVD)法在碳纤维(CF)表面原位生长碳纳米管(CNTs)。考察了不同催化剂、沉积温度、氢气流量以及样品距进气口距离等工艺参数对CNTs-CF生长的影响。利用SEM和高分辨透射电子显微镜(HRTEM)对CNTs-CF形貌和微结构进行了表征和分析。结果表明:在CF表面原位生长的CNTs为多壁结构,其中以Ni为催化剂得到的CNTs直径小、分布均匀;在600~750℃温度范围内,随着温度的升高,CNTs直径和长度减小,产量降低;随着氢气流量的增加,CNTs直径和长度均增加;距进气口30cm,在CF表面得到的CNTs覆盖率高、直径小且分布窄,有利于制备高质量CNTs。  相似文献   

4.
采用碳纳米管电泳沉积到碳纤维表面,达到改性碳纤维复合材料界面性能的目的.将羧基化的碳纳米管在十六烷基三甲基溴化铵的分散作用下制备成不同浓度的水溶液,在电场作用下,将碳纳米管电泳沉积到碳纤维表面.通过扫描电子显微镜、X-射线光电子能谱以及动态接触角对处理前后的碳纤维的表面形貌、表面元素及浸润性进行表征.研究结果表明,经过电泳沉积碳纳米管后,碳纤维的表面粗糙度、表面极性官能团含量及表面能都有较大提高,纤维的浸润性得到提高.对复合材料的界面性能分析表明,复合材料的界面性能在经过处理后有很大提高,当碳纳米管的质量浓度为0.1%,界面剪切强度提高了72.93%.  相似文献   

5.
利用复合电沉积的方法在钛合金基体上成功制备出具有优异光学性能的碳纳米管/黑镍复合涂层, 并研究了复合涂层的微观形貌、光学性能以及镀液中碳纳米管浓度和电镀电流密度对光学性能的影响。实验结果表明: 相较于传统电镀方法获得的单一黑镍涂层, 复合涂层的晶粒尺寸明显减小, 形成多孔结构, 表面粗糙程度明显增加。复合涂层对300~2300 nm范围内的入射光吸收率达到98%左右, 在2.5~20 μm范围内的红外吸收率达到94%, 远远高于传统单一黑镍涂层。复合涂层的太阳吸收比会随着镀液中碳纳米管浓度与电镀电流密度的增加呈先增大后减小的变化规律。  相似文献   

6.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,以Ni为催化剂,经600℃裂解C2H2在Si基底上制备出定向碳纳米管薄膜。采用扫描电子显微镜(SEM)表征了刻蚀后Ni颗粒与沉积的碳纳米管薄膜的形貌。研究了辅助气体对等离子体预处理催化剂与碳纳米管生长的影响。结果表明:辅助气体(H2与N2)流量比对催化剂颗粒尺寸、分布以及碳纳米管生长有显著影响;合适的气体流量比有利于减少碳纳米管薄膜的杂质颗粒,促进其定向生长。预处理过程中气体流量比H2:N2=20:5时,预处理后催化剂Ni颗粒分布密度大、粒径小且分布范围窄,适合碳纳米管均匀着床;沉积生长碳纳米管薄膜时,H2:N2=20:15可得到纯度高、定向性好的碳纳米管。  相似文献   

7.
聚吡咯/多壁碳纳米管的合成及电化学行为   总被引:1,自引:0,他引:1  
在含有多壁碳纳米管(MWCNT)的十二烷基苯磺酸钠(SDBS)溶液中电化学氧化吡咯(Py)制得聚吡咯/多壁碳纳米管(PPy/MWCNT)导电复合膜。研究了聚合温度、电流密度、吡咯浓度对PPy/MWC-NT复合膜沉积量的影响,采用交流阻抗谱(EIS)法研究了该导电复合膜的电化学行为,并用扫描电子显微镜对其表面形貌进行了观察。实验结果表明,随着温度的降低、电流密度及吡咯浓度的增大,复合膜沉积量变大。与纯PPy膜相比,PPy/MWCNT复合膜有更好的电子传递行为,而复合膜表面更加粗糙、疏松。  相似文献   

8.
We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.  相似文献   

9.
The process of nickel nanoparticle nucleation and growth during galvanochemical deposition on the surface of multiwalled carbon nanotubes has been studied. The dependences of the morphology, size, and spacing of nickel nanoparticles on the deposition time at a current density of 5 and 0.5 A/dm2 are determined.  相似文献   

10.
Nickel nanotubes and nanowires are grown by galvanostatic electrodeposition in the pores of 1000, 100, and 15 nm polycarbonate as well as in anodised alumina membranes at a current density of 10 mA cm?2. The effects of pore size, porosity, electrodeposition time, effective current density, and pore aspect ratio are investigated. Nickel nanotube structures are obtained with 1000 nm pore size polycarbonate membrane without any prior treatment method. At the early stages of electrodeposition hollow nickel nanotubes are produced and nanotubes turn into nanowires at longer depositon times. As effective current density accounting for the membrane porosity decreases, the axial growth direction is favoured yielding nanowires rather than nanotubes. However, for smaller pore size polycarbonate membranes, nanowires are obtained even though effective current densities were higher. We believe that when the pore diameter is below a critical size, nanowires grow regardless of current density since narrow pores promote layer by layer growth of nanorods due to smaller surface area of the pore bottom compared to pore walls. Pore size has a dominant effect over effective current density in determining the structure of the fibres produced for small pores. Nickel nanowires are also obtained in the small pores of anodised alumina, which has higher aspect ratios. High aspect ratio membranes favour the fabrication of nanowires regardless of current density.  相似文献   

11.
In this paper, we tried to increase the current density of carbon nanotubes (CNTs) by depositing double layer of CNTs instead of single layer. Both the layers of CNTs are deposited by the low pressure chemical vapour deposition technique on silicon substrate with Fe catalyst. Scanning electron microscopic images show the surface morphology of single and double layer of CNTs. Dual layer deposition of CNTs is a very simple and easy method to increase the current density of CNTs based field emitters than other conventional methods. Excellent field emission properties of double layer of CNTs are exhibited with large field enhancement factor and low turn-on voltage as compared to those for single layer of CNTs. High current density of CNTs is required for field-emission-based display devices associated with field enhancement factor and number of emitting electrons. Therefore, we may say that dual layer deposition of CNTs can be utilised as an alternative approach to improve the current density for field emitters. Stability measurement of the samples was also performed for 3 h (180 min) with current at constant applied voltage, and it was found that the stability of dual layer of CNTs is remarkable than that of single layer of CNTs.  相似文献   

12.
Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.  相似文献   

13.
We report on the growth of carbon nanotubes on a glass substrate at a low temperature of 450 °C by plasma-enhanced chemical vapor deposition in the presence of a magnetic field. The growth of carbon nanotubes can be realized at 450 °C only when a magnetic field is applied to the substrate. Carbon nanotubes cannot be grown in the absence of a magnetic field at the same temperature. An NH3 plasma pretreatment significantly improved the uniformity of the grain size of the Ni catalyst under the magnetic field. The enhancement in the growth of CNTs at low temperature can be attributed to the magnetic moment pre-alignment of the ferromagnetic catalyst film under high magnetic field. A high emission current density of 20 mA/cm2 was obtained at 6 V/μm and a stable emission current was observed. This method permits the growth of carbon nanotubes directly on glass substrate at much more reliable low temperatures for the fabrication of high-density field emitter arrays.  相似文献   

14.
Growing carbon nanotubes (CNT) on the surface of high performance carbon fibers (CF) provides a means to tailor the thermal, electrical and mechanical properties of the fiber–resin interface of a composite. However, many CNT growth processes require pretreatment of the fiber, deposition of an intermediate layer, or harsh growth conditions which can degrade tensile properties and limit the conduction between the fiber and the nanotubes. In this study, high density multi-wall carbon nanotubes were grown directly on two different polyacrylonitrile (PAN)-based carbon fibers (T650 and IM-7) using thermal Chemical Vapor Deposition (CVD). The influence of CVD growth conditions on the single-fiber tensile properties and CNT morphology was investigated. The mechanical properties of the resultant hybrid fibers were shown to depend on the carbon fiber used, the presence of a sizing (coating), the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. The CNT density and alignment morphology was varied with growth temperature and precursor flow rate. Overall, it was concluded that a hybrid fiber with a well-adhered array of dense MWCNTs could be grown on the unsized T650 fiber with no significant degradation in tensile properties.  相似文献   

15.
Three dimensional hybrid carbon materials have been prepared using different biomass-derived porous carbons as catalyst supports for growing multi-walled carbon nanotubes (MWCNTs) via a chemical vapor deposition method. The nickel catalyst-loaded supports before and after growing MWCNTs were characterized by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy spectra, and mercury porosimetry. The results show that the grown MWCNTs microstructures are closely related to the porous structures and surface conditions of the carbon supports. By using bamboo as template, a porous carbon support with a large total pore volume, appropriate pore size, and abundant favorable surface functional groups is obtained, which is found to be an ideal support for growing the MWCNTs. Investigation of growth mechanism demonstrated that the combination of appropriate porous structures and surface conditions plays an essential role in catalyst distribution and MWCNTs growth.  相似文献   

16.
Sadeghian Z 《Nanotechnology》2008,19(24):245612
Vertically aligned multiwall carbon nanotubes were grown by spray pyrolysis of hexane as the carbon source in the presence of ferrocene as catalyst precursor on a quartz substrate. In recent work we used optimal experimental parameters for the feeding method, reactor conditions, reaction temperature and time, concentration of catalyst and flow rate of feed and gas. The process parameters were chosen so as to obtain multiwall carbon nanotubes and aligned multiwall carbon nanotubes. The tubes are around 15-80?nm in diameter. The morphology and structure of the samples were characterized by x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy analyses.  相似文献   

17.
由二种烟煤制备碳纳米管的探索性研究   总被引:24,自引:7,他引:17  
以一种中国烟煤和一种新西兰烟煤为原料,采用电孤等离子体法制备碳纳米管。碳纳米管及其副产物富勒烯烟灰的表征采用扫描电镜(SEM)和红外光谱(FT-IR)等技术。结果表明:电弧放电时的缓冲气体压力对碳纳米管的产率影响很大;在一定的缓冲气压下电极间电流和电极间距各存在一最佳值。在He气压力为0.0665MPa、工作电流为40A条件下进行电弧放电,阴极上棒状沉积物的内芯中碳纳米管含量高达75%以上。基于实验结果,讨论了以煤为原料用电弧等离子体法制备碳纳米管过程中的工艺参数对碳纳米管生长的影响。  相似文献   

18.
Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at − 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes structure was revealed using scanning electron microscope and transmission electron microscope images. Raman spectroscopy was also employed to characterize the nanostructural features and single wall carbon nanotubes were detected.  相似文献   

19.
采用化学气相沉积(CVD)法,在SiC纤维表面沉积了100nm厚的C涂层,研究了制备温度对C涂层微观结构、单丝纤维体电导率及纤维编制体介电性能的影响.采用SEM和RAM显微技术(Raman microscopy)对C涂层的表面形貌和微观结构进行分析.结果表明:保持C涂层厚度一致,当沉积温度由800℃升到900℃后,C涂层的石墨化程度提高,晶粒变大,SiC纤维单丝体电导率由0.745Ω~(-1)·cm~(-1)升到6.289Ω~(-1)·cm~(-1);SiC纤维编制体的复介电常数实部由90升到132,介电损耗由0.95升到1.14,其中虚部由87升到150.实部增大与载流子浓度增大有关,虚部增大与材料漏导电有关.认为这是SiC纤维表面沉积的C层使纤维电导率增大所致.直流电导损耗足其主要损耗机制.  相似文献   

20.
利用化学气相沉积法,以Fe-Mo/Al_2O_3为催化剂,催化分解甲烷气体制备碳纳米管(CNTs).研究了温度,反应时间和气体流速对碳纳米管结构的影响.结果显示:温度是影响碳纳米管壁厚的关键参数.低温导致壁厚为2 nm~7 nm的多壁碳纳米管(MWCNTs)的生成.相对地,高温有利于双壁碳纳米管(DWCNTs)的生长,而更高的温度促使单壁碳纳米管(SWCNTs)的产生.进一步升高温度,得到了壁厚为3 nm~15 nm的MWCNTs和大的炭颗粒.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号