首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y. YinX.H. Fu  H. Ye 《Thin solid films》2011,519(19):6403-6407
Sr0.75Ba0.25Nb2O6 (SBN75) thin films were deposited on silicon substrate with MgO (100) or TiN (100) buffer layer by radio-frequency magnetron sputtering technique. X-ray diffraction confirmed that a 900 °C annealed SBN self-buffer layer introduced before SBN deposition can lead to the highly c-axis orientation of SBN75 thin film on MgO buffer layer. Energy-dispersive spectrometry analysis showed that the SBN75 films had target-film composition transfer and the TiN buffer layer was partially oxidized during SBN growth. The refractive index of SBN films on both MgO/Si and TiN/Si substrates was determined by fitting the measured reflectance curves with Sellmeier dispersion model in the visible region and the micro-structures were studied by scanning electron microscopy. In this paper, the conditions for SBN/MgO/Si treated as waveguide structure were also discussed.  相似文献   

2.
FePt thin films with 40 nm thickness were prepared on thermally oxidized Si (001) substrates by dc magnetron sputtering at the nominal growth temperature 375 °C. The effects of annealing on microstructure and magnetic properties of FePt thin films were investigated. The as-deposited FePt thin films show soft magnetic properties. After the as-deposited FePt thin films were annealed at various temperatures and furnace cooled, it is found that the ordering temperature of L10 FePt phase could be reduced to 350 °C. For FePt thin films annealed at 350 °C, the in-plane and out-of-plane coercivities of the films increased to 510 and 543 kA/m, respectively, and the films had hard magnetic properties. A highly (001) orientation was obtained, when FePt thin films were annealed at 600 °C. And the hysteresis loops of FePt thin films annealed at 600 °C show out-of-plane magnetic anisotropy.  相似文献   

3.
(1-x)Pb[Yb(1/2)Nb(1/2)]O(3)-xPbTiO(3) (PYbN-PT, x=0.5)(001) oriented thin films were deposited onto LaNiO3 (LNO)/Si(001) substrates by sol-gel processing. The crystallographic texture of the films was controlled by the annealing temperature and heating rate. Highly (001) oriented LNO thin films were prepared by a simple metal organic decomposition technique, and the samples were annealed at 700 °C and 750 °C using a rapid thermal annealing process and furnace, respectively. X-ray diffraction analysis revealed that the films of PYbN-PT were highly (001) oriented along LNO/Si substrates. The degree of PYbN-PT orientation is dependent on the heating rate and annealing temperature. Annealing heating rate of 10 °C/s and high annealing temperature near 750 °C produce the greatest degree of (001) orientation, which gives rise to improved dielectric properties.  相似文献   

4.
0.95 (Na0.5Bi0.5)TiO3-0.05 BaTiO3 +1 wt% Bi2O3 (NBT-BT3) ceramic is used as target to deposit the NBT-BT3 thin films. The excess 1wt% Bi2O3 is used to compensate the vaporization of Bi2O3 during the sintering and annealing processes. NBT-BT3 thin films are successfully deposited using radio frequency (RF) magnetron sputter method and crystallized subsequently using a conventional furnace annealing (CFA) process. The annealed process is conducted in air and in oxygen atmosphere at temperatures ranging from 600-800 degrees C for 60 min. As compared with the as-deposited NBT-BT3 thin films, the CFA-treated process has improved the grain growth and crystallization. We will show that the annealing atmosphere is the more important parameter to influence the grain growth and crystallization of NBT-BT3 thin films than the annealing temperature. The influences of CFA-treated temperature and atmosphere on the electrical characteristics of NBT-BT3 thin films, including the polarization characteristics (Pr, Ps, and Ec values), the capacitance-voltage (C-V) curves, and the leakage current density-electric field (J-E) curves, are also investigated in this study.  相似文献   

5.
Al-doped ZnO (AZO) thin films were deposited on p- type Si(100) substrate by r.f magnetron sputtering at 200, 300 and 400 °C substrate temperatures. The deposited films were annealed in air atmosphere for 1 h at temperatures of 700, 800 and 900 °C. The deposition temperature and post-deposition annealing effects on structural and optical properties of the AZO samples were analyzed using X-ray diffraction, atomic force microscope and photoluminescence (PL). After annealing, the value of full width half maximum of the diffraction peaks was decreased as well as, the intensity of visible and strong UV PL emission peaks were increased with temperature. However, the deep-level emission related with zinc point defects was removed by annealing of the samples. Results revealed that all of the as-deposited and annealed AZO films have hexagonal structure along (002) direction and their crystallinity were improved with the increased deposition and post-growth annealing temperatures. In addition, the surface roughness and the particle size of the films were increased with increased deposition and annealing temperatures.  相似文献   

6.
Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.  相似文献   

7.
The structural and magnetic properties of L10-FePt/Ag films were studied by X-ray diffraction and a vibrating sample magnetometer. The FeAg/Pt films were obtained by depositing FeAg thin films on thermally oxidized Si (001) substrates via magnetron sputtering and Pt layers on their surface after annealing FeAg thin films at 400 °C with and without an out-of-plane magnetic field of 10 kOe. These films were further annealed at various temperatures to obtain L10-FePt phase. The results indicated that the pre-annealing of FeAg thin films under 10 kOe magnetic field caused (001) orientation of Fe particles, and the deposition of Pt layer on such orientated underlayers reduced the ordering temperature of FePt in FeAg/Pt films, realizing the L10-FePt phase at 400 °C. The higher coercivity and ordering degree were also observed in the samples, compared with those pre-annealed without magnetic field at the same annealing condition.  相似文献   

8.
The growth and optical properties of nanocomposite thin films comprising of nanocrystalline Sn and Si are reported. The nanocomposite films are produced by thermal annealing of bilayers of Sn and Si deposited on borosilicate glass substrates at various temperatures from 300 to 500 °C for 1 h in air. X-ray diffraction reveals that the as-deposited bilayers consist of nanocrystalline Sn films with a crystallite size of 30 nm, while the Si thin films are amorphous. There is onset of crystallinity in Si on annealing to 300 °C with the appearance of the (111) peak of the diamond cubic structure. The crystallite size of Si increases from 5 to 18 nm, whereas the Sn crystallite size decreases with increase in annealing temperature. Significantly, there is no evidence for any Sn–Si compound, and therefore it is concluded that the films are nanocomposites of Sn and Si. Measured spectral transmittance curves show that the films have high optical absorption in the as-deposited form which decreases on annealing to 300 °C. The films show almost 80 % transmission in the visible-near infrared region when the annealing temperature is increased to 500 °C. There is concomitant decrease in refractive index from 4.0, at 1750 nm, for the as-deposited film, to 1.88 for the film annealed at 500 °C. The optical band gap of the films increases on annealing (from 1.8 to ~2.9 eV at 500 °C). The Sn-Si nanocomposites have high refractive index, large band gap, and low optical absorption, and can therefore be used in many optical applications.  相似文献   

9.
采用氧化亚铜(Cu_2O)陶瓷靶,利用射频磁控溅射沉积法在氮气和氩气的混合气氛下制备了N掺杂Cu_2O(Cu_2O∶N)薄膜,并在N_2气氛下对薄膜进行了快速热退火处理,研究了N_2流量和退火温度对Cu_2O∶N薄膜的生长行为、物相结构、表面形貌及光电性能的影响。结果显示,在衬底温度300℃、N_2流量12sccm条件下生长的薄膜为纯相Cu_2O薄膜;在N_2气氛下对预沉积薄膜进行快速热退火处理不影响薄膜的物相结构,薄膜的结晶质量随退火温度(450℃)的升高而显著改善;快速热退火处理能改善薄膜的结晶质量和缺陷,降低光生载流子的散射,增强载流子的传输,预沉积Cu_2O∶N薄膜经400℃退火处理后展示出较好的电性能,薄膜的霍尔迁移率(μ)为27.8cm~2·V~(-1)·s~(-1)、电阻率(ρ)为2.47×10~3Ω·cm。研究表明低温溅射沉积和快速热退火处理能有效改善Cu_2O∶N薄膜的光电性能。  相似文献   

10.
直流磁控反应溅射制备IrO2薄膜   总被引:3,自引:0,他引:3  
为研究氧化铱(IrO2)对PZT铁电薄膜疲性能的影响。利用直流(DC)磁控反应溅射(sputtering)工艺成功地在SiO2/Si(100)衬底上制得了高度取向的IrO2薄膜,并在其上制成PZT铁电薄膜,讨论了溅射参数(溅射功率、Ar/O2比、衬底温度)以及退火条件对氧化铱薄膜的结晶,取向和形态的影响。  相似文献   

11.
王丽格  黄美东  杜珊  佟莉娜  刘野 《真空》2012,49(3):55-57
在常温下,采用射频反应磁控溅射方法在不同溅射功率下于K9双面抛光玻璃基底上制备二氧化钛薄膜.将制备的样品进行450℃退火6h热处理.利用X射线衍射仪(XRD)对比分析了退火前后薄膜的微观结构,采用光栅光谱仪测试了退火前后薄膜样品的透射谱.实验结果表明,退火前薄膜样品是非晶态,退火后薄膜晶化为晶态,但不同溅射功率下制备的薄膜结晶取向有差异;退火热处理对薄膜的折射率有一定影响,表现为退火前后透射谱偏移.  相似文献   

12.
We present a new cost-effective method to produce substoichiometric SiO2 thin films by means of a simple sputter-coater operated at a base pressure of 1 x 10(-3) mbar. During sputtering air is introduced through a fine valve so that the sputtering gas is a mixture of air/Ar. High-resolution electron microscopy shows the formation of amorphous SiO(x) thin films for the as-deposited samples. The index x approaches 1 when the ratio of the partial pressure of air/Ar tends to 0.1. On the other hand, pure silica is formed when the ratio of the partial pressure of air/Ar approaches 0.5. The films in the as-deposited state show intense green-yellow photoluminescence. This fades away with short annealing under air at 950 degrees C. If on the other hand, prolonged annealing is performed under Argon atmosphere at 1000 degrees C, red-infrared photoluminescence is recorded due to the formation of Si nanocrystals embedded in SiO2. This simple method could be suitable for the production of thin SiO(x) films with embedded nanocrystals for optoelectronic or photovoltaic applications.  相似文献   

13.
Fe thin films were deposited by oblique target direct current magnetron sputtering on Si (100) and (111) substrates. The structure, surface morphology and magnetic properties of the thin films were characterized using X-ray diffraction, field emission scanning electron microscopy, and superconducting quantum interference device magnetometer, respectively. The results reveal that the structure of the as-deposited Fe thin films is body-centered cubic with the preferential [110] crystalline orientation. A pyramid-like nanostructure with sharp tip was formed on the surfaces of Fe thin films under appropriate sputtering power. Formation of the pyramid-like nanostructure is mainly owed to the enhancement of atomic mobility and the bombardment effect with increasing of sputtering power. Meanwhile, the crystalline orientation of Si substrate and the intrinsic stress in the films are expected to have little contribution to the formation of the pyramid-like nanostructure. The magnetic anisotropy was found in the as-deposited Fe thin films, and varies with the thickness of the Fe thin films. As the film thickness increases from 604 to 1,786 nm, the magnetic anisotropy field and the uniaxial anisotropy constant increase from 3.8 to 5.6 kOe, and from 0.4 × 106 to 1.1 × 106 erg/cm3, respectively, which indicates that besides magnetocrystalline anisotropy, stress induced anisotropy and shape anisotropy also exist in the as-deposited Fe thin films.  相似文献   

14.
Titanium dioxide thin films were obtained by RF magnetron sputtering system with different Ar and O atmospheres. Chemical bonding structures of the thin films were investigated using the Fourier transform infrared spectroscopy (FTIR) in the range of 400-7500 cm− 1 for as-deposited and conventionally thermal annealed films at different temperature in air. These structural characterizations of the films were carried out by describing the low-frequency fluctuations of the FTIR spectra using the noninvasive (i.e. error controllable) procedure of the optimal linear smoothing. This approach is based on the criterion of the minimal relative error in selection of the proper smoothing window. It allows the receiving an optimal separation of a possible trend from the high-frequency fluctuations, defined as a random sequence of the relative fluctuations possessing zero trends. Thus, the noise can be read and extra information about the structures was then obtained by comparing with the experimental results. In the film annealed at 900 °C, the rutile phase was the dominant crystalline phase as revealed by infrared spectroscopy. At the annealing temperatures lower than 900 °C, both the anatase and the rutile phases were coexisting. In addition, symmetric and asymmetric Si-O-Si vibrations modes were observed at around 1000 cm− 1 and 800 cm− 1, respectively. These peaks suggest that a thin SiO2 film was formed at the TiO2/Si interface during the growth and the annealing of the TiO2 films. It was also observed that the reactivity between TiO2 film and Si substrate is increased with the increasing annealing temperature.  相似文献   

15.
Amorphous germanium telluride (GeTe) thin films were fabricated on SiO2/Si subtracts by RF sputtering at room temperature. The thickness of the as-deposited films is about 200 nm. Indium-doping on GeTe thin films were prepared by solution doping method. The GeTe thin films were dipped into InCl3 solution with 1 mol/L, 0.8 mol/L, 0.5 mol/L and 0.1 mol/L for an hour at 100 degrees C, respectively. Then the thin films were annealed at 200 degrees C for 10 min. The I-T measurements show that the amorphous-crystalline transition temperature of In-GeTe films is lower than that of the undoped thin films. XRD reveals the formation of rock salt structure after annealing at 280 degrees C. XPS indicates that In-Te bond which may correspond to In2Te3 exists in the doped thin film. The results of calculating density of states (DOS) show that the changes of electronic states are mainly located around Fermi energy level with the increasing Indium content. These results indicate that the transition temperature of GeTe films can be effectively tuned by solution process doping indium, which may be useful to decrease set current.  相似文献   

16.
Lead titanate thin films were deposited by atomic layer deposition on Si(100) using Ph4Pb and Ti(O-i-Pr)4 as metal precursors and O3 and H2O as oxygen sources. The influence of the Ti : Pb precursor pulsing ratio on the film growth, stoichiometry and quality was studied at two different temperatures, i.e. 250 and 300 °C. Uniform and stoichiometric films were obtained using a Ti : Pb precursor pulsing ratio of 1 : 10 at 250 °C or 1 : 28 at 300 °C. The as-deposited films were amorphous but the crystalline PbTiO3 phase was obtained by rapid thermal annealing at 600-900 °C both in N2 and O2 ambient. Thin PbTiO3 films were visually uniform and roughness values for as-deposited and annealed films were observed by atomic force microscopy.  相似文献   

17.
Barium titanate (BaTiO3) thin films have been prepared by electrophoretic deposition on p-doped and platinum covered silicon (Si) substrates. Their structure, nanostructure and dielectric properties were characterized. The as-deposited films were polycrystalline and composed by barium titanate nanograins with an average grain size approximately 9 nm. Annealing at high temperatures promoted grain growth, so that the samples annealed at 600 degrees C presented average grain sizes approximately 24 nm. From Raman spectroscopy measurements it was found that the tetragonal (ferroelectric) BaTiO3 phase was stabilized on the films. Also, at higher annealing temperatures, cation disorder was reduced on the films. From measurements of the temperature dependence of the dielectric permittivity the corresponding paraelectric-ferroelectric phase transition was determined. The observed transition temperature (approximately 100 degrees C) was found to be below the BaTiO3 bulk or thick film values, due to the small nanosized grains composing the films.  相似文献   

18.
Si(100)衬底上PLD法制备高取向度AlN薄膜   总被引:1,自引:0,他引:1  
采用脉冲激光沉积法(PLD),以KrF准分子为脉冲激光源,Si(100)为衬底,同时引 入缓冲层TiN和Ti0.8Al0.2N,制备了结晶质量优异的A1N薄膜,X射线衍射(XRD)及反射 式高能电子衍射(RHEED)分析表明A1N薄膜呈(001)取向、二维层状生长.研究发现,薄膜 的生长模式依赖于缓冲层种类,直接在Si衬底上或MgO/Si衬底上的A1N薄膜呈三维岛状生 长;而同时引入缓冲层TiN和Ti0.8Al0.2N时,A1N薄膜呈二维层状生长.此外,激光能量密 度大小对A1N薄膜的结晶性有显著的影响,激光能量密度过大,薄膜表面粗糙,有颗粒状沉积 物生成.在氮气气氛中沉积,能使薄膜的取向由(001)改变为(100).  相似文献   

19.
SiOx films with a nominal x-value (1≤x≤2) were deposited on flat-surface silicon substrates by reactive r.f. magnetron sputtering at substrate temperatures of 20 and 500°C, respectively. X-ray diffraction and high resolution TEM investigations of SiOx films with x=1.45 and x=1 show that as-deposited films have an amorphous structure. After annealing, a nucleation of Si nanocrystals was found with increasing size at increasing initial Si concentration and annealing temperature. The weak photoluminescence in the visible region of as-deposited SiOx films increases remarkably by annealing with dependence on x.  相似文献   

20.
Lead germanate-silicate (Pb5Ge2.85Si0.15O11) ferroelectric thin films were successfully fabricated on Pt/Ti/SiO2/(100)Si substrates by the sol-gel process. The thin films were fabricated by multi-coating at preheating temperatures of 350 and 450 °C. After annealing the thin films at 600 °C, the films exhibited c-axis preferred orientation. The degree of c-axis preferred orientation of the thin films preheated at 350 °C was higher than that of films preheated at 450 °C. Grain growth was influenced by the annealing time. The thin films exhibited a well-saturated ferroelectric P-E hysteresis loop when preheated at 350 °C and annealed at 600 °C for 1.5 h. The values of the remanent polarization (Pr) and the coercive field (Ec) were approximately 2.1 μC/cm2 and 100 kV/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号