首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
热丝CVD法低温制备的多晶硅薄膜质量对衬底依赖性的研究   总被引:2,自引:0,他引:2  
以SiH4和H2作为反应气体,采用HWCVD的方法分别在石英玻璃、AZO、Si(100)和Si(111)衬底上制备了多晶硅薄膜。利用X射线衍射(XRD),拉曼(Raman)光谱和傅里叶红外(FT-IR)吸收光谱研究了不同衬底对多晶硅薄膜的择优取向、晶化率和应力的影响,用SEM观察了多晶硅薄膜的表面形貌。研究发现在4种衬底上生长的多晶硅薄膜均为(111)择优取向。单晶硅片对多晶硅薄膜有很强的诱导作用,并且Si(111)的诱导作用优于Si(100)的诱导作用。AZO对多晶硅薄膜生长也有一定的诱导作用。通过计算薄膜晶态比,得到除以石英为衬底的样品外,其它3种样品的晶态比均在90%以上,尤其以单晶硅片为衬底的样品更高。石英玻璃、AZO和Si(100)上生长的多晶硅薄膜中均存在压应力。  相似文献   

2.
Zhaodi Ren 《Thin solid films》2009,517(17):5014-7524
Nanoelectrode of conductive TiSi nanowires with Ti5Si3 conductive bottom layer underneath is prepared on glass substrate by atmosphere pressure chemical vapor deposition (APCVD) method. Pb0.4Sr0.6 (Ti0.97 Mg0.03) O2.97 (PST) thin film is deposited on the nanoelectrode by rf-sputtering method. The morphology and phase structure of the nanoelectrode are measured by FE-SEM and XRD, respectively. The dielectric property of a PST thin film deposited on the nanoelectrode substrate is obtained by Agilent 4294A Impedance Analyzer. The results show that the conductive Ti5Si3 crystalline phase bottom layer is formed at deposition temperature above 710 °C, and the conductive TiSi single crystal nanowires are formed on the bottom layer perfectly in this case. By using the substrate on which the TiSi nanowire planted Ti5Si3 electrode is prepared, the PST thin film is deposited and it exhibits the high tunability of approximately 61% which is much higher than that deposited on the Ti5Si3 coated glass substrates without TiSi nanowires.  相似文献   

3.
We report on the selective area growth of GaN nanowires (NWs) on nano-patterned Si(111) substrates by metalorganic chemical vapor deposition. The nano-patterns were fabricated by the oxidation of Si followed by the etching process of Au nano-droplets. The size of formed nano-pattern on Si(111) substrate was corresponding to the size of Au nano-droplet, and the diameter of GaN NWs grown was similar to the diameter of fabricated nano-pattern. The interesting phenomenon of using the nano-patterned Si(111) substrates is the formation of very clear substrate surface even after the growth of GaN NWs. However, in the case of GaN NWs grown using Au nano-droplets, there was several nanoparticles including GaN bulk grains on the Si(111) substrates. The smooth surface morphology of nano-patterned Si(111) substrates was attributed to the presence of SiO2 layer which prevents the formation of unnecessary GaN particles during the GaN NW growth. Therefore, we believe that nano-patterning method of Si(111) which was obtained by the oxidation of Si(111) substrate and subsequent Au etching process can be utilized to grow high-quality GaN NWs and its related nano-device applications.  相似文献   

4.
Pan L  Lew KK  Redwing JM  Dickey EC 《Nano letters》2005,5(6):1081-1085
There have been extensive studies of germanium (Ge) grown on planar silicon (Si) substrates by the Stranski-Krastanow (S-K) mechanism. In this study, we present S-K growth of Ge on Si nanowires. The Si nanowires were grown at 500 degrees C by a vapor-liquid-solid (VLS) method, using silane (SiH4) as the gaseous precursor. By switching the gas source from SiH4 to germane (GeH4) during the growth and maintaining the growth conditions, epitaxial Ge islands deposited on the outer surface of the initially formed Si nanowires. Transmission electron microscopy (TEM), scanning TEM, and energy-dispersive X-ray spectroscopy techniques were utilized to identify the thin wetting layer and the three-dimensional Ge islands formed around the Si core nanowires. Cross-sectional TEM verified the surface faceting of the Si core nanowires as well as the Ge islands.  相似文献   

5.
Ihn SG  Song JI  Kim TW  Leem DS  Lee T  Lee SG  Koh EK  Song K 《Nano letters》2007,7(1):39-44
GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along <111> directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs<111> nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.  相似文献   

6.
Large number density Pt nanowires with typical dimensions of 12 microm x 20 nm x 5 nm (length x width x height) are fabricated on planar oxide supports. First sub-20 nm single crystalline silicon nanowires are fabricated by size reduction lithography, and then the Si nanowire pattern is replicated to produce a large number of Pt nanowires by nanoimprint lithography. The width and height of the Pt nanowires are uniform and are controlled with nanometer precision. The nanowire number density is 4 x 10(4) cm(-1), resulting in a Pt surface area larger than 2 cm(2) on a 5 x 5 cm(2) oxide substrate. Bimodal nanowires with different width have been generated by using a Pt shadow deposition technique. Using this technique, alternating 10 and 19 nm wide nanowires are produced.  相似文献   

7.
Silica nanowire arrays were grown directly onto plain glass substrates by scalable flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate). The silicon dioxide films consisted of a network of interwoven nanowires from a few to several hundred nanometres long (depending on the process conditions) and about 20 nm in diameter, as determined by scanning electron microscopy. These films were formed rapidly (within 10-20 s) at high growth rates (ca 11-30 nm s(-1)) by chemical vapour deposition (surface growth) at ambient conditions on the glass substrate as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, on high purity quartz nearly no nanowires were grown while on steel substrates porous SiO(2) films were formed. Functionalization with perfluorooctyl triethoxysilane converted the nanowire surface from super-hydrophilic to hydrophobic. Additionally, their hermetic coating by thin carbon layers was demonstrated also revealing their potential as substrates for synthesis of other functional 1D composite structures. This approach is a significant step towards large scale synthesis of SiO(2) nanowires facilitating their utilization in several applications.  相似文献   

8.
Au-catalyzed GaAs nanowires were grown on Si substrates by vapor-liquid-solid growth method using a molecular beam epitaxy (MBE). The MBE growth could produce controlled crystalline orientation and uniform diameter along the wire axis of the GaAs nanowires by adjusting growth conditions including growth temperature and V/III flux ratio. Growths of GaAslang001rang as well as GaAslang111rang nanowires were observed by transmission electron microscopy and scanning electron microscopy. Epitaxially grown GaAslang111rang nanowires on a Si(111) substrate were verified through x-ray diffraction out-of-plane 2thetas/omega-scans. A strong room-temperature photoluminescence (PL) was observed from the epitaxially grown GaAslang111rang nanowires on a Si(100) substrate. Results of low-temperature (10 K) PL measurements and current-sensing atomic force microscopy indicated that the GaAs nanowires on a Si substrate were unintentionally doped with Si  相似文献   

9.
Large-area upstanding silicon nanowires (SiNWs) were synthesized by hot-filament chemical vapor deposition (HFCVD) using silicon monoxide (SiO) powder as Si source under high vacuum (1.2 x 10(-5) Torr). Gold nanoparticles (AuNPs) were employed as catalyst, which were formed on Si substrate by in-situ reduction of gold chloride (AuCl3). The size and distribution of the Au nanoparticles can be easily controlled through chemical reaction conditions. Consequently, the diameter, length and density of SiNWs could be varied in certain range. The SiNWs obtained are single crystalline with growth directions predominantly along [01-1]. Silicon nanowires in large-scale and diameter less than 10 nm can be grown on different Si substrates with this method. Organic inorganic hybrid solar cells based on SiNWs arrays have been demonstrated.  相似文献   

10.
beta-SiC nanowires were synthesized on different monocrystalline substrates: Si (001), Si (111), 3C-SiC (001), 4H-SiC (0001), 6H-SiC (0001). The SiC nanowire growth was carried out using a Chemical Vapor Deposition method, with silane and propane diluted in hydrogen (3%) as precursors. The deposition was performed at atmospheric pressure and at 1100 degrees C, after dewetting of the Ni catalyst, which had been previously evaporated onto the substrate, to induce 1D growth according to a VLS process. The crystal structure of the nanowires, as determined by X-ray diffraction and High Resolution Transmission Electron Microscopy, corresponds to 3C-SiC polytype growing along a (111) direction, irrespective of the substrate. The occurrence of (111) stacking faults was observed, partly reduced for samples grown on 3C-SiC substrate. The growth on (111) substrate allowed to achieve a good vertical alignment of the nanowires, as investigated by Scanning Electron Microscopy. High Angle Annular Dark Field imaging and Energy Dispersive X-Ray spectroscopy were performed to study the catalyst particle on top of the wires and showed the formation of a nickel-silicon alloy.  相似文献   

11.
在Si(111)衬底上,采用SiH4-C3H8-H2气体反应体系,通过低压化学气相沉积(LPCVD)工艺外延出结晶质量良好的SiC薄膜.低温光致发光谱表明该薄膜属于6H-SiC多型体.X射线衍射图表明该薄膜具有高度的择优取向性.扫描电子显微镜图表明该薄膜由片状SiC晶粒组成.拉曼光谱和透射电子衍射谱的结果进一步表明该薄膜具有较高的结晶质量.对Si(111)衬底上6H-SiC薄膜的生长机制进行了初步探讨.  相似文献   

12.
Undoped ZnO films were deposited using pulsed laser deposition technique on Si and glass substrates in different O2 partial pressures (ranging from 10(-5) mbar to 3 mbar) and substrate temperatures. When the substrate temperature is 500 degrees C and O2 partial pressure (pp) approximately 3 mbar, randomly oriented ZnO hexagons were observed on glass substrate, whereas, dense ZnO hexagonal rod like structures (diameter ranging from 200-500 nm) were observed on Si substrate. The photoluminescence (PL) characterization of ZnO film grown on Si exhibited an intense defect free narrow excitonic emission in the UV region (Full width half maximum (FWHM) approximately 11.26 nm) as compared to broad emission (FWHM approximately 57.06 nm) from that grown on glass. The parent film emission was found to shift from UV to blue region on doping ZnO with Vanadium.  相似文献   

13.
Hochbaum AI  Fan R  He R  Yang P 《Nano letters》2005,5(3):457-460
Silicon nanowires were synthesized, in a controlled manner, for their practical integration into devices. Gold colloids were used for nanowire synthesis by the vapor-liquid-solid growth mechanism. Using SiCl4 as the precursor gas in a chemical vapor deposition system, nanowire arrays were grown vertically aligned with respect to the substrate. By manipulating the colloid deposition on the substrate, highly controlled growth of aligned silicon nanowires was achieved. Nanowire arrays were synthesized with narrow size distributions dictated by the seeding colloids and with average diameters down to 39 nm. The density of wire growth was successfully varied from approximately 0.1-1.8 wires/microm2. Patterned deposition of the colloids led to confinement of the vertical nanowire growth to selected regions. In addition, Si nanowires were grown directly into microchannels to demonstrate the flexibility of the deposition technique. By controlling various aspects of nanowire growth, these methods will enable their efficient and economical incorporation into devices.  相似文献   

14.
Tateno K  Zhang G  Nakano H 《Nano letters》2008,8(11):3645-3650
We investigated the growth of GaInAs/AlInAs heterostructure nanowires on InP(111)B and Si(111) substrates in a metalorganic vapor phase epitaxy reactor. Au colloids were used to deposit Au catalysts 20 and 40 nm in diameter on the substrate surfaces. We obtained vertical GaInAs and AlInAs nanowires on InP(111)B surfaces. The GaInAs nanowires capped with GaAs/AlInAs layers show room-temperature photoluminescence. The peak exhibits a blue-shift when the Ga content in the core GaInAs nanowire is increased. For the GaInAs/AlInAs heterostructure growth, it is possible to change the Ga content sharply but Al also exists in the GaInAs layer regions. We also found that the ratios of Ga and Al contents to In content tend to increase and the axial growth rate to decrease along the nanowire toward the top. We were also able to make vertical GaInAs nanowires on Si(111) surfaces after a short growth of GaP and InP.  相似文献   

15.
采用微波等离子体退火方法使溅射的金属Ti膜与Si(111)衬底发生固相反应,直接生成低阻态的金属硅化物薄膜,XRD检测显示最终生成的C54相TiSi2在Si(111)衬底上有明显的织构,证明了微波等离子体退火应用于钛的硅化工艺中的可行性.  相似文献   

16.
1. Introductiontransparent conductive indium tin oxide (ITO)films have been extensively used in a variety of electronic and opto--electronic applications because oftheir high transmission in the visible range, high infrared (IR) reflection, and low electrical resistivity.A variety of deposition techniques have been appliedto fabricate ITO films such as CVD, spray pyrolysisand sputteringll'2]. However, sputtering is the mostextensively used technique especially in industry. Recelltly, targe…  相似文献   

17.
Guo Y  Ma S  Xu K  Bell T 《Nanotechnology》2008,19(21):215603
Ti-Si-C-N coatings with different Si contents were synthesized by means of pulsed direct current plasma-enhanced chemical vapor deposition using a TiCl(4), SiCl(4), CH(4), N(2), H(2) and Ar gas mixture. A complex phase transition has been identified which is strongly controlled by the silicon content in the coatings. Transmission electron microscopy (TEM) and x-ray diffraction (XRD) results indicate that increasing Si content leads to a phase transition from a solid solution (Ti, Si)(C, N) to a dual-phase Ti?(C,N)+TiSi(2) structure, and then to a two-phase Ti?(C,N)+SiC structure, and that the changes in grain size and lattice parameter coincide with the phase transition. The Ti-Si-C-N coatings with high Si contents (≥4.3?at.%) possess a superhigh hardness (43-52?GPa) due to grain refinement/grain boundary hardening and compressive stress/dispersion hardening of the hard, nanosized crystalline TiSi(2) or SiC dispersed in the matrix.  相似文献   

18.
Single-crystalline cadmium nanowires were successfully fabricated by vaporization of cadmium metal powders in a horizontal quartz tube furnace at 250 degrees C. The vaporization was carried out for 30 minutes and yielded nanowires of diameters of 80 to 250 nm and lengths up to several tens of microns. The nanowires were deposited on a Si (111) substrate kept at the lower temperature zone (150-175 degrees C) of the furnace. When the deposition temperature was lower than this, hexagonal nanodisks were produced. The possible mechanism for the formation of the obtained nanostructures is discussed.  相似文献   

19.
The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH3+) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 °C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 °C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam.  相似文献   

20.
采用PECVD技术,在玻璃衬底上低温沉积了优质本征纳米硅薄膜,并利用Raman光谱对其微结构作了表征。研究结果表明,硅烷浓度、衬底温度Ts对表征纳米硅薄膜微结构的晶化率和平均晶粒尺寸参数影响很大。SiH4浓度越低,越有利于晶化,对应的晶化率拐点温度越低。平均晶粒尺寸、晶化率随衬底温度的升高具有相似的变化规律,谱中出现的拐点温度一致,暗示它们之间存在紧密的联系。从薄膜生长角度对该实验结果作了合理解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号