首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO thin films with different buffer layer thicknesses were grown on Si and porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of PS and buffer layer thickness on the structural and optical properties of ZnO thin films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL). The ZnO buffer layers, the intensity of the (002) diffraction peak for the ZnO thin films and its full width at half maximum (FWHM) decreased with an increase in the thickness of the ZnO buffer layers, indicating an improvement in the crystal quality of the films. On introducing PS as a substrate, the grain sizes of the ZnO thin films became larger and their residual stress could be relaxed compared with the ZnO thin films grown on Si. The intensity ratio of the ultraviolet (UV) to visible emission peak in the PL spectra of the ZnO thin films increased with an increase in buffer layer thickness. Stronger and narrower UV emission peaks were observed for ZnO thin films grown on PS. Their structural and optical properties were enhanced by increasing the buffer layer thickness. In addition, introduction of PS as a substrate enhanced the structural and optical properties of the ZnO thin films and also suppressed Fabry-Perot interference.  相似文献   

2.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

3.
采用射频磁控溅射法在玻璃衬底上制备了[101]取向的Li:ZnO薄膜, 研究了该薄膜的光学性能随热处理温度变化的规律. 结果表明, 399nm的发光峰是由Li的杂质能级引起; 与[002]取向的薄膜相比, 未经热处理的[101]薄膜其光学带隙大, 且出现了380nm附近的带边发射(NBE) 峰; 在560~580℃热处理下, 其晶胞变小、光学带隙变窄、360nm 左右的带间发光峰红移; 当热处理温度升至610℃时, 薄膜中再次出现380nm的NBE峰.  相似文献   

4.
采用常压固相烧结法制备了Al-Ti共掺ZnO靶材, 采用射频磁控溅射技术及真空退火工艺, 在普通玻璃衬底上制备了具有[100]取向Al-Ti共掺杂ZnO薄膜(ZATO). 采用X射线衍射(XRD)、扫描电子显微镜(SEM)对ZATO薄膜的生长机理、显微结构、形貌进行了测试分析, 用四探针测试仪、紫外-可见分光光度计及荧光光谱仪对ZATO薄膜的光电性能进行了测试分析. 结果表明, ZATO薄膜经500℃保温3h退火后, 择优取向由(002)向(100)方向转变; 此时, 衍射谱上还观察到超点阵衍射线条. [100]取向ZATO薄膜的光学带隙从退火前的3.29降至2.86, 平均可见光透过率从90%降至70%, 表现为一般的透过性; 而电阻率则从1.89×10-2Ω·cm降至1.25×10-3Ω·cm, 呈现较好的导电性. 薄膜中均出现了380nm附近的带边发射(NBE)峰以及410、564nm的深能级发射峰, 且经500℃保温3h退火后, 这些峰的位置并未改变, 但峰强均明显减弱. 对上述实验机理进行了分析讨论.  相似文献   

5.
ZnO/TiO2 thin films were fabricated on quartz glass substrates by E-beam evaporation. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectra, optical transmittance and photoluminescence. XRD analysis indicates that the TiO2 buffer layer can increase the preferential orientation along the (002) plane of the ZnO film. PL measurements suggest that co-emission of strong UV peak at 378 nm, violet peak at 423 nm and weak green luminescence at 544 nm is observed in the ZnO/TiO2 thin film. The violet luminescence emission at 423 nm is attributed to the interface trap in the ZnO film grain boundaries.  相似文献   

6.
The influence of homo-buffer layers deposited at high-temperature (HT) or low-temperature (LT) and post-annealing process on the structure and photoluminescence properties of ZnO films grown by pulsed laser deposition on Si (100) was studied by X-ray diffraction (XRD), atomic force microscope (AFM) and photoluminescence spectrum (PL). It is found that the optical property of the films can be improved greatly because the stress between the films and the substrates could be reduced by using buffer layers. By using LT buffer layer, high-quality ZnO films with only one strong ultraviolet emission (UV) can be obtained, but the post-annealing process in air will make the optical property of the film deteriorate.  相似文献   

7.
This is a report on the effect of a ZnO buffer layer on the microstructures and optical properties of MgZnO thin films grown on Si (100) substrates by radio frequency magnetron sputtering. For the sample without the ZnO buffer layer, the microstructural analyses carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the formation of Mg2Si in the interface between the Si substrate and the MgZnO thin film. Mg2Si induced the random oriented polycrystalline MgZnO thin film. For the sample with the ZnO buffer layer, a few Mg2Si were observed. An epitaxial relationship between the Si substrate and the MgZnO thin film was formed. In both samples, the photoluminescence (PL) investigation showed a small blue shift of the emission peak, which was owing to the incorporation of Mg atoms in ZnO by co-sputtering the MgO and ZnO targets. In addition, the sample with the ZnO buffer layer showed the enhanced PL intensity, when compared with the sample without the buffer layer.  相似文献   

8.
采用溶胶-凝胶(sol—gel)旋涂法在载玻片上制备了不同A1掺杂量的Mg—Al共掺杂ZnO薄膜.在室温下利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和光致发光(PL)谱仪等手段分析了Mg—Al共掺杂Zn0薄膜的微结构、形貌和发光特性.XRD结果表明Mg.AI&掺杂zn0薄膜具有六角纤锌矿结构;随着Al掺杂量的增加,共掺杂薄膜呈C轴取向生长.由SEM照片可知薄膜表面形貌随Al掺杂量的增加由颗粒状结构向纳米棒状结构转变.透射光谱表明共掺杂薄膜在可见光区内的透射率大于50%,紫外吸收边发生蓝移.在室温下的PL谱表明Mg—Al共掺杂zn0薄膜的紫外发射峰向短波长方向移动:Al掺杂摩尔分数为1%和3%的Mg—Al共掺杂ZnO薄膜的可见发射峰分别为596nm的黄光和565nm的绿光.黄光主要与氧间隙有关,而绿光主要与氧空位有关.  相似文献   

9.
In this study, nanocolumnar zinc oxide thin films were catalyst-free electrodeposited directly on n-Si and p-Si substrates, what makes an important junction for optoelectronic devices. We demonstrate that ZnO thin films can be grown on Si at low cathodic potential by electrochemical synthesis. The scanning electron microscopy SEM showed that the ZnO thin films consist of nanocolumns with radius of about 150 nm on n-Si and 200 nm on p-Si substrates, possess uniform size distribution and fully covers surfaces. X-ray diffraction (XRD) measurements show that the films are crystalline material and are preferably grown along (0 0 2) direction. The impact of thermal annealing in the temperature range of 150-800 °C on ZnO film properties has been carried out. Low-temperature photoluminescence (PL) spectra of the as-prepared ZnO/Si samples show the extremely high intensity of the near bandgap luminescence along with the absence of visible emission. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments, however, the luminescence intensity was found to decrease at higher annealing temperatures (800 °C). The obtained results indicate that electrodeposition is an efficient low-temperature technique for the growth of high-quality and crystallographically oriented ZnO thin films on n-Si and p-Si substrates for device applications.  相似文献   

10.
Wang Zhaoyang  Hu Lizhong 《Vacuum》2009,83(5):906-875
ZnO thin films were grown on Si (111) substrates by pulsed laser deposition (PLD) at various oxygen pressures in order to investigate the structural and optical properties of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The structural and morphological properties of the films were investigated by XRD and AFM measurements, respectively. The results suggest that films grown at 20 Pa and 50 Pa have excellent UV emission and high-quality crystallinity. The research of PL spectra indicates that UV emission is due to excitonic combination, the green band is due to the replacing of Zn in the crystal lattice for O and the blue band is due to the O vacancies.  相似文献   

11.
Highly oriented zinc oxide thin films have been grown on quartz, Si (1 1 1) and sapphire substrates by pulsed laser deposition (PLD). The effect of temperature and substrate parameter on structural and optical properties of ZnO thin films has been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectra and PL spectra. The experimental results show that the best crystalline thin films grown on different substrate with hexagonal wurtzite structure were achieved at growth temperature 400–500 °C. The growth temperature of ZnO thin film deposited on Si (1 1 1) substrate is lower than that of sapphire and quartz. The band gaps are increasing from 3.2 to 3.31 eV for ZnO thin film fabricated on quartz substrate at growth temperature from 100 to 600 °C. The crystalline quality and UV emission of ZnO thin film grown on sapphire substrate are significantly higher than those of other ZnO thin films grown on different substrates.  相似文献   

12.
采用直流反应溅射法在Si(100)衬底上制备了有TiO2过渡层的ZnO薄膜,并与直接在Si上生长的样品进行比较。通过X射线衍射技术和光致发光谱等分别对ZnO薄膜的结构和光学性质进行测量和分析。测量结果表明,引入过渡层后ZnO薄膜的平均晶粒尺寸变大,晶粒间界变少,结晶质量提高,薄膜内的应力得到一定程度的释放。此外,室温光致发光谱表明过渡层使ZnO薄膜的紫外发射明显增强,并研究和分析了其微观机理。  相似文献   

13.
Annealed ZnO thin film at 300, 350, 400, 450 and 500 °C in air were deposited on glass substrate by using pulsed laser deposition. The effects of annealing temperature on the structural and optical properties of annealed ZnO thin films by grazing incident X-ray diffraction (GIXRD), transmittance spectra, and photoluminescence (PL) were investigated. The GIXRD reveal the presence of hexagonal wurtzite structure of ZnO with preferred orientation (002). The particle size is calculated using Debye–Scherrer equation and the average grain size were found to be in the range 5.22–10.61 ± 0.01 nm. The transmittance spectra demonstrate highly transparent nature of the films in visible region (>70 %). The calculation of optical band gap energy is found to be in the range 2.95–3.32 ± 0.01 eV. The PL spectra shows that the amorphous film gives a UV emission only and the annealed films produce UV, violet, blue and green emissions this indicates that the point defects increased as the amorphous film was annealed.  相似文献   

14.
ZnO films thin films have been deposited on glass and three different LiNbO3 (LNO) substrates at room temperature using radio frequency magnetron sputtering. The structure and optical properties of the films were investigated by X-ray diffraction (XRD), optical transmission spectroscopy and spectro-photometry. XRD analysis shows that all the films are hexagonal wurtzite structure, and there is compressive strain in the films. Typical optical transmittance values in the order of 80% were obtained for all the films, and the band gaps are in the range of 3.273-3.282 eV. The Photo-Luminescence (PL) spectra results indicate that the type of substrate affects the photoluminecence of ZnO films significantly, and the films on rotated Y-cut 128° LNO substrates have strong UV emission at room temperature.  相似文献   

15.
PLD工艺制备高质量ZnO/Si异质外延薄膜   总被引:1,自引:0,他引:1  
采用脉冲激光沉积工艺在不同条件下以Si(111)为衬底制备了Zno薄膜.通过对不同氧压下(0~50Pa)沉积的样品的室温PL谱测试表明,氧气氛显著地提高了薄膜的发光质量,在50Pa氧气中沉积的ZnO薄膜具有最强的近带边UV发射.XRD测试说明在氧气氛中得到的薄膜结晶质量较差,没有单一的(002)取向.利用-低温(500℃)沉积的ZnO薄膜作缓冲层,得到了高质量的ZnO外延膜.与直接沉积的ZnO膜相比,生长在缓冲层上的ZnO膜展现出规则的斑点状衍射花样,而且拥有更强的UV发射和更窄的UV峰半高宽(98meV).对不同温度下沉积的缓冲层进行了RHEED表征,结果表明,在600~650℃之间生长缓冲层,有望进一步改善ZnO外延膜的质量.  相似文献   

16.
The effect of annealing temperature on the structural morphology and optical properties of preferential nonpolar plane orientated ZnO thin films on Si (100) substrates by single source chemical vapor deposition (SSCVD) was investigated. The structural and morphological properties of the films were characterized by X-ray diffraction (XRD) and atomic force microscope (AFM) measurements respectively. All the ZnO films annealed at the selected temperatures (500–800 °C) exhibiting ab axis orientation, but with preferential nonpolar (100) plane orientation. It is found that the intensity of the (100) peak depends strongly on the annealing temperature, while that of (101) peak shows a variation in a very small scale. The surface morphology demonstrates that the film is of the uniform grains except for that annealed at 800 °C, for the aggregation of the ZnO particles occurred. The film shows a superior smooth surface annealed at 600 and 700 °C in comparison with other thermal annealed. It is also found from the photoluminescence(PL) measurements that the film annealed at 700 °C exhibits the lowest deep-level emission(DLE). However, the intensity of the near band edge emissions (NBE) and DLE show a wavelike variation, which are consistent to the variation of the intensity of (100) peak in the XRD results.  相似文献   

17.
Feng Xu  Yan Xie  Yunfei Liu 《Vacuum》2008,83(2):360-365
Large-scale and dense ZnO thin films with novel petal-like architectures were directly electrodeposited on the Au/ITO glass substrates from aqueous solution of Zn(NO3)2 and HMTA at a low temperature of 70 °C for the first time. Scanning electron microscopic (SEM) investigation revealed that the Au/ITO glass substrates are fully covered with densely distributed ZnO petal-like architectures. X-ray powder diffraction (XRD) pattern indicated that as-prepared unique films are highly crystalline and wurtzite hexagonal phase with extremely preferred orientation along [0001] direction. The optical band gap energy was found to be 3.85 eV for ZnO film with petal-like architectures on the Au/ITO substrate. Moreover, a strong and sharp ultraviolet (UV) emission at 386 nm but very weak defect-related deep level emission (DLE) in the room temperature photoluminescence (PL) spectrum also indicated that as-grown films are of good crystal quality. The possible growth mechanism for the novel petal-like architectures suggested that both the inherent highly anisotropic structure of ZnO and large lattice mismatch between ZnO and Au played crucial roles in determining final surface microstructures of the products.  相似文献   

18.
Cu-doped zinc oxide (ZnO:Cu) films were deposited on Si substrates using radio frequency reactive magnetron sputtering at different oxygen partial pressures. The effect of oxygen partial pressure on the microstructures and optical properties of ZnO:Cu thin films were systematically investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and fluorescence spectrophotometer. The results indicated that the grain orientation of the films was promoted by appropriate oxygen partial pressures. And with increasing oxygen partial pressure, the compressive stress of the films increased first and then decreased. The photoluminescence (PL) of the samples were measured at room temperature. A violet peak, two blue peaks and a green peak were observed from the PL spectra of the four samples. The origin of these emissions was discussed and the mechanism of violet emission of ZnO:Cu thin films were suggested.  相似文献   

19.
ZnO thin films were deposited on graphite substrates by ultrasonic spray pyrolysis method. The effects of substrate temperature and film thickness on the crystalline structure, morphology, and optical properties of the as-grown ZnO films were investigated systemically. Results illustrated that dense ZnO films with hexagonal wurtzite structure were uniformly distributed on the substrate. Strong near-band edge ultraviolet (UV) emission peaks were observed in room temperature photoluminescence (PL) spectra for the samples prepared under optimized parameters, yet the usually observed defect related deep level emissions were nearly undetectable, indicating high optical quality ZnO films could be achieved via this easy process under optimal conditions. The successful growth of polycrystalline ZnO films on graphite offers the significant opportunity to be readily transferred onto any rigid or flexible foreign substrates, since the graphite substrates consist of weakly bonded layer structure.  相似文献   

20.
ZnO/SiC multilayer film has been fabricated on a Si (111) substrate with a silicon carbide (SiC) buffer layer using the RF (radio frequency)-magnetron technique with targets of a ceramic polycrystalline zinc oxide (ZnO) and a composite target of pure C plate with attached Si chips on the surface. The as-deposited films were annealed at a temperature range of 600–1000°C under nitrogen atmosphere. The structure and photoluminescence (PL) properties of the samples were measured using X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy and PL spectrophotometry. By increasing the annealing temperature to 800°C, it is found that all the ZnO peaks have the strongest intensities, and the crystallinity of ZnO is more consistent on the SiC buffer layer. Further increase of the annealing temperature allows the ZnO and SiC layers to penetrate one another, which makes the interface between ZnO and SiC layer become more and more complicated, thus reduces the crystallinities of ZnO and SiC. The PL properties of a ZnO/SiC multilayer are investigated in detail. It is discovered that the PL intensities of these bands reach their maximum after being annealed at 800°C. The PL peaks shift with an increase in the annealing temperature, which is due to the ZnO and SiC layers penetrating reciprocally. This makes the interface more impacted and complicated, which induces band structure deformation resulting from lattice deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号