首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Ti(SO4)2为钛源,采用尿素辅助水热法合成了介孔TiO2微球,利用XRD、FESEM和比表面积分析仪对样品的晶型、形貌和比表面积进行分析,探讨了尿素加入量对TiO2微球的颗粒尺寸、比表面积、孔径和孔容的影响。采用刮涂法,用所合成的介孔TiO2微球制备了染料敏化太阳能电池(DSSC)的光阳极,结果表明,尿素用量为1.2g合成的介孔TiO2微球所组装的电池在模拟太阳光的照射下(100mW/cm2,AM1.5),光电转换效率为6.2%,明显高于商用P25纳晶所组装的电池光电转换效率(4.24%)。  相似文献   

2.
Peng W  Yanagida M  Han L  Ahmed S 《Nanotechnology》2011,22(27):275709
We present a straightforward procedure to prepare composite photoanodes which consisted of TiO2 rutile nanorods/anatase nanoparticles synthesized under hydrothermal conditions, with the ratio of rutile to anatase controlled simply by adjusting the volume of nitric acid. The as-prepared TiO2 composites exhibited high specific surface area, light-scattering effect, and good crystallinity. The dye-sensitized solar cells (DSCs) using the TiO2 composites showed higher short-circuit photocurrent and overall conversion efficiency than the DSC from pure-anatase nanoparticles. The highest conversion efficiency was achieved from the DSC based on TiO2 nanocomposites with 24 wt% rutile nanorods, which was attributed to improved light harvesting caused by the enhancement of specific surface area and scattering effect from rutile nanorods.  相似文献   

3.
Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 °C for 2 h, the rutile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of rutile TiO2 microspheres and anatase TiO2 nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of rutile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450–800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular rutile single crystals phases giving high electron collection efficiency.   相似文献   

4.
One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.0 μm, which may be ascribed to a smaller nanowire diameter with a high internal surface area and better optical transmittance with an increase in the incident light intensity on the N719 dye; as well as a firm connection at the FTO/TiO(2) nanowire interface.  相似文献   

5.
Ye M  Xin X  Lin C  Lin Z 《Nano letters》2011,11(8):3214-3220
Dye-sensitized solar cells (DSSCs) based on hierarchically structured TiO(2) nanotubes prepared by a facile combination of two-step electrochemical anodization with a hydrothermal process exhibited remarkable performance. Vertically oriented, smooth TiO(2) nanotube arrays fabricated by a two-step anodic oxidation were subjected to hydrothermal treatment, thereby creating advantageous roughness on the TiO(2) nanotube surface (i.e., forming hierarchically structured nanotube arrays-nanoscopic tubes composed of a large number of nanoparticles on the surface) that led to an increased dye loading. Subsequently, these nanotubes were exploited to produce DSSCs in a backside illumination mode, yielding a significantly high power conversion efficiency, of 7.12%, which was further increased to 7.75% upon exposure to O(2) plasma.  相似文献   

6.
Highly crystalline mesoporous anatase TiO(2) is prepared through supramolecular self-assembly and by utilizing cetyltrimethylammonium bromide (CTAB) as templating material. Photoanodes of dye-sensitized solar cells (DSSCs) made from these TiO(2) nanoparticles are found to have a high specific surface area of 153 m(2)/g and high surface roughness. Optical absorption spectroscopy studies reveal that the photoanode films adsorb four times more dye than films made of commercial P25 TiO(2). Mercury porosimetry and field emission scanning electron microscope (FESEM) studies show hierarchical macro- and meso-porosity of the photoanode films leading to better dye and electrolyte percolation, combined with improved electron conduction pathways compared to P25 films. Electrochemical impedance studies confirm lower impedance and higher electron lifetime in the synthesized mesoporous TiO(2) films compared to P25 films. Higher photovoltaic efficiency was recorded of cells made from the synthesized mesoporous TiO(2) in comparison to the corresponding cells made from P25. Incident-photon-to-current efficiency data provided critical understanding of recombination kinetics, and provided proof of Mie scattering by the self-assembled submicrometer sized TiO(2) aggregates and the macropores in their structure. The scattering phenomenon was further corroborated by diffused reflectance studies. An in-depth analysis of CTAB-templated mesoporous TiO(2) has been conducted to show how it can be a good candidate photoanode material for enhancing the performance of DSSCs.  相似文献   

7.
Anatase TiO(2) mesoporous structures with high specific surface areas are of special significance in various applications. In this work, hierarchical anatase TiO(2) materials with flowerlike morphologies have been prepared via a one-step template-free hydrothermal method, by using titanocene dichloride as precursor and EDA as chelating agent in aqueous solution. Particularly, the hierarchical structures are assembled from very thin TiO(2) nanosheets, which are composed of numerous highly crystallized anatase nanocrystals. In addition, the assembled materials own relatively large specific surface areas of 170 m(2)/g, and uniform mesopores of 7 nm. We further demonstrate that the hierarchical TiO(2) materials show very good photocatalytic performance when applied in photodegradation of methylene blue, which should be related to the unique features of hierarchical structures, large specific surface areas and high crystallization degree of the obtained TiO(2) materials. With these features, the hierarchical TiO(2) may find more potential applications in the fields such as dye-sensitized solar cells and lithium ion batteries.  相似文献   

8.
Mesoporous anatase TiO2 nanotubes (NTs) with the diameter of about 7 12 nm and the length of several hundred nanometers were synthesized by a hydrothermal method on commercial TiO2 particles in NaOH followed by HCI washing. The samples were characterized by X-ray diffraction (XRD), transmitting electron microscopy (TEM), and Brunauer-Emmet-Teller (BET) measurements. The hydrothermal treatment temperature at 130 degrees C was shown to affect not only the extent of particle-to-sheet conversion, and thus the resulting structures of the NTs, but also the anatase-to-rutile transformation. The surface area of the NTs was 200 m2g(-1). This value was much higher in comparison to TiO2 nanoparticles of 50 m2g(-1). It was also found that the NT photoelectrodes had a pronounced impact on the performance of solar cells as compared to nanoparticle ones. This was probably due to lead to a significantly higher specific dye loading and, for certain hydrothermal treatments, resulting in a doubling of the solar cell efficiency (in our case from 2.84% to 4.03% of AM 1.5 conditions).  相似文献   

9.
Mesoporous TiO(2) anatase microspheres consisting of self-assembled nanocrystals have been synthesized by a one-step hydrothermal method at 120 (o)C using titanium-peroxo complex, without a post-calcination process. Transmission and scanning electron microscopic imaging reveal that diamond-shaped nanocrystals as primary particles, which are 20 nm in average width and 50 nm in length and oriented with (101) plane of anatase phase, are aggregated to form a secondary microsphere particle with 0.5-1 μm in diameter. BET analysis data show that the TiO(2) anatase particles possess significantly large surface area of 254 m(2) g(-1) with the pore size of ~14 nm. Mesoporous TiO(2) anatase anode shows an enhanced lithium storage performance in pyrrolidinium-based ionic liquid electrolyte diluted with ethyl methyl carbonate, delivering 195 - 150 mAhg(-1) at the C/2 rate with 77 % capacity retention and 98-99 % Coulombic efficiencies over 50 cycles despite the absence of surface carbon-coating. AC impedance analysis results reveal that the formation of a stable solid electrolyte interphase (SEI) layer in diluted ionic liquid electrolyte induces the enhanced cycling performance. Control of electrode-electrolyte interfacial compatibility enables the enhancement of cycling performance and the preservation of microstructure. The data contribute to provide cost-efficient synthetic method for the TiO(2) and the interfacial control aspect of performance control for safer batteries.  相似文献   

10.
Pan X  Chen C  Zhu K  Fan Z 《Nanotechnology》2011,22(23):235402
We present a detailed study of the infiltration of titanium dioxide (TiO(2)) nanotubes (NTs) with TiO(2) nanoparticles (NPs) for dye sensitized solar cells (DSSCs). The aim is to combine the merits of the NP's high dye loading and high light harvesting capability with the NT's straight carrier transport path and high electron collection efficiency to improve the DSSC performance. On infiltrating NTs with TiCl(4) solution followed by hydrothermal synthesis, 10 nm size NPs were observed to form a conformal and dense layer on the NT walls. Compared with the bare NT structure, dye loading of this mixed NT and NP structure is more than doubled. The overall photon conversion efficiencies of the fabricated DSSCs are improved by 152%, 107%, and 49% for 8, 13, and 20 μm long NTs, respectively. Electron transport and recombination parameters were extracted based on electrochemical impedance spectroscopy measurements. Although a slight reduction of electron lifetime was observed in the mixed structures due to enhanced recombination with a larger surface area, the diffusion length is still significantly longer than the NT length used, suggesting that most electrons are collected. In addition to dye loading and hence photocurrent increment, the photovoltage and filling factor were also improved in the mixed structure due to a low serial resistance, leading to the enhancement of the overall efficiency.  相似文献   

11.
High surface area nanosheet TiO2 with mesoporous structure were synthesized by hydrothermal method at 130 degrees C for 12 h. The samples characterized by XRD, SEM, TEM, SAED, and BET surface area. The nanosheet structure was slightly curved and approximately 50-100 nm in width and several nanometers in thickness. The as-synthesized nanosheet TiO2 had average pore diameter about 3-4 nm. The BET surface area and pore volume of the sample were about 642 m(2)/g and 0.774 cm(3)/g, respectively. The nanosheet structure after calcinations were changed into nanorods/nanoparticles composite with anatase TiO2 structure at 300-500 degrees C (10-15 nm in rods diameter and about 5-10 nm in particles diameter). The solar energy conversion efficiency (eta) of the cell using nanorods/nanoparticles TiO2 (from the nanosheet calcined at 450 degrees C for 2 h) with mesoporous structure was about 7.08% with Jsc of 16.35 mA/cm(2), Voc of 0.703 V and ff of 0.627; while eta of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm(2), Voc of 0.704 V, and ff of 0.649.  相似文献   

12.
Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.  相似文献   

13.
Wu JJ  Chen GR  Lu CC  Wu WT  Chen JS 《Nanotechnology》2008,19(10):105702
TiO(2) nanowire (NW)/nanoparticle (NP) composite films have been fabricated by hybridizing various ratios of hydrothermal anatase NWs and TiO(2) NPs for use in dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) images reveal that uniform NW/NP composite films were formed on fluorine-doped tin oxide?(FTO) substrates by the dip-coating method. The NWs are randomly but neither vertically nor horizontally oriented within the composite film. The TiO(2) NP DSSC possesses superior performance to those of the NW/NP composite and the pure NW cells, and the efficiency of the NW/NP composite DSSC increases on increasing the NP/NW ratio in the composite anode. All types of DSSC possess the same dependence of performance on the anode thickness that the efficiency increases with the anode thickness to a maximum value, then it decreases when the anode is thickened further. Electrochemical impedance spectroscopy analyses reveal that the NP DSSCs possess larger effective electron diffusion coefficients (D(eff)) in the photoanodes and smaller diffusion resistances of I(3)(-) in electrolytes compared to those in the NW/NP and the NW DSSCs. D(eff) decreases when NWs are added into the photoanode. These results suggest that the vertical feature of the NWs within the anodes is crucial for achieving a high electron transport rate in the anode.  相似文献   

14.
A facile,fluorine-free approach for synthesizing vertically aligned arrays of mesocrystalline anatase TiO2 nanosheets with highly exposed {001} facets was developed through topotactic transformation.Unique mesocrystalline {001}-faceted TiO2 nanosheet arrays vertically aligned on conductive fluorine-doped tin oxide glass were realized through topotactic conversion from single-crystalline precursor nanosheet arrays based on lattice matching between the precursor and the anatase crystals.The morphology and microstructure of the {001}-faceted TiO2 nanosheets could be readily modulated by changing the reactant concentration and annealing temperature.Owing to enhanced dye adsorption,reduced charge recombination,and enhanced light scattering arising from the exposed {001} facets,in addition to the advantageous features of low-dimensional structure arrays (e.g.,fast electron transport and efficient charge collection),the obtained TiO2 nanosheet arrays exhibited superior performance when they were used as anodes for dye-sensitized solar cells (DSSCs).Particularly,{001}-faceted TiO2 nanosheet arrays ~15 μm long annealed at 500 ℃ showed a power conversion efficiency of 7.51%.Furthermore,a remarkable efficiency of 8.85% was achieved for a DSSC based on double-layered TiO2 nanosheet arrays ~35 μm long,which were prepared by conversion from the precursor nanoarrays produced via secondary hydrothermal growth.  相似文献   

15.
近年来,半导体量子点敏化太阳能电池作为新一代的太阳能电池,引起了广泛的关注.Sb2S2和Sb2Se3量子点由于具有出色的光吸收特性与带隙的可调控性,已成为敏化太阳能电池领域的重要组成部分.通过水热法,二氧化钛(TiO2)单晶纳米阵列被成功生长在FTO导电玻璃上.通过连续离子层吸附法(SILAR),Sb2S3Sb2Se3复合纳米结构被生长在二氧化钛单晶纳米阵列的表面.利用x射线衍射(XRD)表征Sb2S3和Sb2Se3纳米晶体的晶相,利用扫描电子显微镜(SEM)表征其形貌,发现在这一复合结构中,二氧化钛单晶纳米阵列与Sb2S3结合之后所留下的空隙被Sb2Se3量子点填充,从而提高了结构表面积的利用率.随着连续离子层吸附法反应周期的增加,Sb2S3-Sb2Se3,与二氧化钛单晶纳米阵列共同形成复合结构的带隙发生了明显的红移,吸收边在可调控的情况下由1.7eV向红外波段发生了移动.这种纳米结构的比表面积大、工艺简单、结构致密、沉积速率快、可调控性强,对于今后敏化太阳能电池领域的应用有很大的启发作用.  相似文献   

16.
Dye-sensitized solar cells (DSSCs) were prepared using TiO(2) nanotubes, grown by controlled Ti anodic oxidation in non-aqueous media. Smooth, vertically oriented TiO(2) nanotube arrays, presenting a high degree of self-organization and a length of 20 μm, have been grown using ethylene glycol electrolyte containing HF. As-grown nanotubes exhibit an amorphous structure, which transforms to the anatase TiO(2) crystalline phase upon post-annealing in air at 450?°C. Atomic force microscopy (AFM) revealed the porous morphology together with high roughness and fractality of the surface. The annealed tubes were sensitized by the standard N719 ruthenium dye and the adsorption was characterized using resonance micro-Raman spectroscopy and adsorption-desorption measurements. The sensitized tubes were further used as active photoelectrodes after incorporation in sandwich-type DSSCs using both liquid and solidified electrolytes. The efficiencies obtained under air mass (AM) 1.5 conditions, using a back-side illumination geometry, were very promising: 0.85% using a composite polymer redox electrolyte, while the efficiency was further increased up to 1.65% using a liquid electrolyte.  相似文献   

17.
This study uses TiO2 nanoparticles and highly ordered anatase TiO2 nanotubes (AOTnt) as thin film photoanodes for dye-sensitized solar cells (DSSCs). DSSCs are assembled by single-layer and double-layer films of photoanodes and their electron transfer performance is compared. TiO2 nanoparticles were fabricated by the sol-gel method, and AOTnts were grown on titanium foil. This study uses TiO2 nanoparticles or AOTnts to prepare single-layer photoanodes and TiO2 nanoparticles coated on an AOTnt film to fabricate double-layer photoanodes. These three different photoanodes are soaked in dye and assembled into DSSCs, and their open-loop voltage recession, electrochemical impedance, lifetime, life cycle, and effective diffusion coefficient are measured. Electron transfer efficiency of the photoanodes and light harvesting efficiency are further analyzed. The results show that the electron transfer efficiency, open-loop voltage recession, lifetime, life cycle, and effective diffusion coefficient of the DSSCs assembled using double-layer photoanodes (AOTnt-TiO2) are superior to those of single-layer photoanodes (TiO2 or AOTnt).  相似文献   

18.
利用溶剂热合成法成功制备出了形貌为准球形、棒形、球棒混合型和菱形,粒径在50nm以下、尺寸均一的锐钛矿型TiO2纳米晶,对合成出的纳米晶TiO2用荧光光谱,紫外/可见光吸收光谱进行光学性能表征,结果表明,TiO2纳米晶在330 nm的激发光下,分别在345 nm、363nm、380nm和402 nm处存在4个发光峰位。在实验中,首次发现和证实了理论计算出的锐钛矿型TiO2纳米晶的两种直接跃迁发光,分别对应为X(1b)→X(2b)(345 nm)和X(1b)→X(1a)(363 nm),主要因为油酸改变了TiO2纳米晶的{001}晶面族晶面的表面态。TiO2纳米晶的紫外吸收峰位于229 nm,且与其形貌无关;禁带宽度的计算值接近其理论值3.2 eV。  相似文献   

19.
TiO2 nanofiber consisting of 15 +/- 5 nm anatase grains was synthesized by hydrothermal treatment of fibrous hydrogen titanate precursor at 180 degrees C for 20 h. The hydrogen titanate precursor was synthesized by hydrothermal treatment of commercial P25 TiO2 powder in 10 M NaOH at 200 degrees C for 20 h followed by soaking in 0.1 M HNO3 to perform ion exchange between the as-synthesized Na titanate and H. By controlling pH of the solution during hydrothermal treatment of the hydrogen titanate precursor, pure anatase TiO2 nanofiber was obtained. Its band-gap energy determined from the onset of diffused reflectance spectrum was 3.19 eV which is equal to that of anatase TiO2 powder. The TiO2 nanofiber showed higher photodecomposition efficiency than the Cotiox KA-100 TiO2 but lower than the P25 TiO2. Photodegradation is the predominant process for 'Reactive blue 171' removal.  相似文献   

20.
TiO2 nanofibers were prepared from a mixture of titanium-tetra-isopropoxide and poly vinyl pyrrolidone by applying the electrospinning method. The samples were characterized by XRD, FE-SEM, TEM and BET analyses. The diameter of electrospun TiO2 nanofibers is in the range of 70 approximately 160 nm. To improve the short-circuit photocurrent, we added the TiO2 nanofibers in the TiO2 electrode of dye-sensitized solar cells (DSSCs). TiO2 nanofibers added in DSSCs can make up to 20% more conversion energy than the conventional DSSC with only TiO2 films only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号