首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Silicon (Si) quantum dot (QD) materials have been proposed for 'all-silicon' tandem solar cells. In this study, solar cells consisting of phosphorus-doped Si QDs in a SiO(2) matrix deposited on p-type crystalline Si substrates (c-Si) were fabricated. The Si QDs were formed by alternate deposition of SiO(2) and silicon-rich SiO(x) with magnetron co-sputtering, followed by high-temperature annealing. Current tunnelling through the QD layer was observed from the solar cells with a dot spacing of 2?nm or less. To get the required current densities through the devices, the dot spacing in the SiO(2) matrix had to be 2?nm or less. The open-circuit voltage was found to increase proportionally with reductions in QD size, which may relate to a bandgap widening effect in Si QDs or an improved heterojunction field allowing a greater split of the Fermi levels in the Si substrate. Successful fabrication of (n-type) Si QD/(p-type) c-Si photovoltaic devices is an encouraging step towards the realization of all-silicon tandem solar cells based on Si QD materials.  相似文献   

2.
Quantum dots (QDs) are being highlighted in display applications for their excellent optical properties, including tunable bandgaps, narrow emission bandwidth, and high efficiency. However, issues with their stability must be overcome to achieve the next level of development. QDs are utilized in display applications for their photoluminescence (PL) and electroluminescence. The PL characteristics of QDs are applied to display or lighting applications in the form of color‐conversion QD films, and the electroluminescence of QDs is utilized in quantum dot light‐emitting diodes (QLEDs). Studies on the stability of QDs and QD devices in display applications are reviewed herein. QDs can be degraded by oxygen, water, thermal heating, and UV exposure. Various approaches have been developed to protect QDs from degradation by controlling the composition of their shells and ligands. Phosphorescent QDs have been protected by bulky ligands, physical incorporation in polymer matrices, and covalent bonding with polymer matrices. The stability of electroluminescent QLEDs can be enhanced by using inorganic charge transport layers and by improving charge balance. As understanding of the degradation mechanisms of QDs increases and more stable QDs and display devices are developed, QDs are expected to play critical roles in advanced display applications.  相似文献   

3.
Precise patterning of quantum dot (QD) layers is an important prerequisite for fabricating QD light-emitting diode (QLED) displays and other optoelectronic devices. However, conventional patterning methods cannot simultaneously meet the stringent requirements of resolution, throughput, and uniformity of the pattern profile while maintaining a high photoluminescence quantum yield (PLQY) of the patterned QD layers. Here, a specially designed nanocrystal ink is introduced, “photopatternable emissive nanocrystals” (PENs), which satisfies these requirements. Photoacid generators in the PEN inks allow photoresist-free, high-resolution optical patterning of QDs through photochemical reactions and in situ ligand exchange in QD films. Various fluorescence and electroluminescence patterns with a feature size down to ≈1.5 µm are demonstrated using red, green, and blue PEN inks. The patterned QD films maintain ≈75% of original PLQY and the electroluminescence characteristics of the patterned QLEDs are comparable to thopse of non-patterned control devices. The patterning mechanism is elucidated by in-depth investigation of the photochemical transformations of the photoacid generators and changes in the optical properties of the QDs at each patterning step. This advanced patterning method provides a new way for additive manufacturing of integrated optoelectronic devices using colloidal QDs.  相似文献   

4.
Abstract

Observation-angle dependence of the spontaneous emission life-time of CdTe quantum dots (QDs) embedded in a pseudogap photonic crystal (PC) film has been demonstrated. Comparison of two PC films with different photonic band-gaps (PBGs) differentiates the PBG effect from the electronic and/or chemical interactions between CdTe QDs and the host medium. This lifetime modification of QDs by a PC with pseudogap can be very useful in applications for optoelectronic devices such as QD lasers and QD switches.  相似文献   

5.
Progress in controlling the size, shape, and composition of quantum dots (QDs) as well as their positioning will be crucial to further advances in the fields of quantum information and device applications. The growth of QDs into lattices using controlled positioning of the QD nucleation centers is a possible method. QD positioning is also much needed for further development of QD microcavities and photonic-crystal based devices that are used for quantum information applications. This article discusses the prospects for progress in these fields that may be realized if a better control over the positioning and self-positioning of quantum dots is achieved.  相似文献   

6.
The effect of rapid thermal annealing (RTA) on the optical properties of a 10 layer stacked InAs/GaAs quantum dot (QD) heterostructure where the QDs are overgrown with a combination of quaternary InAlGaAs and GaAs capping have been investigated. TEM micrographs showed that the shape of the QDs is preserved for annealing temperatures up to 800 degrees C. The peak emission wavelength of the investigated heterostructures remains stable on annealing at temperatures upto 750 degrees C, which is unusual in QD samples. This phenomenon is attributed due to the suppression of the strain-enhanced intermixing in such structures. One of the reasons behind such suppression is the strain driven phase separation of Indium from the overgrown quaternary alloy, which maintains an In rich region across the QD periphery thereby checking the out-diffusion of Indium from the dots. The overlapping vertical strain from the under lying dot layers in the QD stack also maintains a strain relaxed state at the QD base, thereby preventing the material mixing at the base of the pyramidal QDs. This stability of wavelength is of paramount importance in optoelectronic devices where the design is based on the emission wavelength of the active region.  相似文献   

7.
Multiple exciton generation (MEG) in quantum dots (QDs), a process by which one absorbed photon generates multiple electron-hole pairs, has provided exciting possibilities for improving the energy conversion efficiency of photovoltaic and photocatalytic devices. However, implementing MEG in practical devices requires the extraction of multiple charge carriers before exciton-exciton annihilation and the development of materials with improved MEG efficiency. In this report, using PbS QD/methylene blue complexes as a QD/electron acceptor model system, we demonstrate that the presence of electron acceptors does not affect the MEG efficiency of QDs and all generated excitons can be dissociated by electron transfer to the acceptor, achieving MEG and multiple exciton dissociation efficiencies of 112%. We further demonstrate that these efficiencies are not affected by the charging of QDs.  相似文献   

8.
Excitonic and spin excitations of single semiconductor quantum dots (QDs) currently attract attention as possible candidates for solid-state-based implementations of quantum logic devices. Due to their rather short decoherence times in the picosecond to nanosecond range, such implementations rely on using ultrafast optical pulses to probe and control coherent polarizations. We combine ultrafast spectroscopy and near-field microscopy to probe the nonlinear optical response of a single QD on a femtosecond time-scale. Transient reflectivity spectra show pronounced oscillations around the QD exciton line. These oscillations reflect phase-disturbing Coulomb interactions between the excitonic QD polarization and continuum excitations. The results show that although semiconductor QDs resemble in many respects atomic systems, Coulomb many-body interactions can contribute significantly to their optical nonlinearities on ultrashort time-scales.  相似文献   

9.
Lee CW  Renaud C  Hsu CS  Nguyen TP 《Nanotechnology》2008,19(45):455202
We report the fabrication and investigations of organic light-emitting diodes (OLEDs) using a composite made by mixing poly[2-methoxy-5(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with CdSe/ZnS core/shell quantum dots (QDs). The electroluminescence efficiency of the studied devices was found to be improved as compared to devices using MEH-PPV. Moreover, the current density decreased with increasing QD concentration. We checked the effects of QDs on the electrical transport by determining the trap states, making use of the charge-based deep level transient spectroscopy (Q-DLTS) technique. The most striking result obtained is the decrease in trap density when adding QDs to the MEH-PPV polymer film. These results suggest that QDs would heal defects in nanocomposite-based devices and that CdSe/ZnS QDs prevent the trap center formation.  相似文献   

10.
MoS2 quantum dots (QDs)‐based white‐light‐emitting diodes (QD‐WLEDs) are designed, fabricated, and demonstrated. The highly luminescent, histidine‐doped MoS2 QDs synthesized by microwave induced fragmentation of 2D MoS2 nanoflakes possess a wide distribution of available electronic states as inferred from the pronounced excitation‐wavelength‐dependent emission properties. Notably, the histidine‐doped MoS2 QDs show a very strong emission intensity, which exceeds seven times of magnitude larger than that of pristine MoS2 QDs. The strongly enhanced emission is mainly attributed to nitrogen acceptor bound excitons and passivation of defects by histidine‐doping, which can enhance the radiative recombination drastically. The enabled electroluminescence (EL) spectra of the QD‐WLEDs with the main peak around 500 nm are found to be consistent with the photoluminescence spectra of the histidine‐doped MoS2 QDs. The enhanced intensity of EL spectra with the current increase shows the stability of histidine‐doped MoS2 based QD‐WLEDs. The typical EL spectrum of the novel QD‐WLEDs has a Commission Internationale de l'Eclairage chromaticity coordinate of (0.30, 0.36) exhibiting an intrinsic broadband white‐light emission. The unprecedented and low‐toxicity QD‐WLEDs based on a single light‐emitting material can serve as an excellent alternative for using transition metal dichalcogenides QDs as next generation optoelectronic devices.  相似文献   

11.
Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO 2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.  相似文献   

12.
This perspective provides an overview of the techniques that have been developed for the conjugation of DNA to colloidal quantum dots (QDs), or semiconductor nanocrystals. Methods described include: ligand exchange at the QD surface, covalent conjugation of DNA to the QD surface ligands, and one-step DNA functionalization on core QDs or during core/shell QD synthesis in aqueous solution, with an emphasis on the most recent progress in our lab. We will also discuss emerging trends in DNA-functionalized QDs for potential applications.   相似文献   

13.
We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.  相似文献   

14.
S Kwon  ZC Chen  JH Kim  J Xiang 《Nano letters》2012,12(9):4757-4762
Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.  相似文献   

15.
We report color-tunable light-emitting devices employing CdSe/ZnS quantum dots (QDs) blended into a polymer light-emitting electrochemical cell (LEC) architecture. This novel structure circumvents the charge-tunneling barrier of QDs to achieve bright, uniform, and highly voltage-independent electroluminescence, with nearly all emission generated by the QDs. By blending varying ratios of two QD materials that emit at different wavelengths, we demonstrate precise color control in a single layer device structure.  相似文献   

16.
Effect of post-growth annealing on 10 layer stacked InAs/GaAs quantum dots (QDs) with InAlGaAs/GaAs combination capping layer grown by molecular beam epitaxy has been investigated. The QD heterostructure shows a low temperature (8 K) photoluminescence (PL) emission peak at 1267 nm. No frequency shift in the peak emission wavelength is seen even for annealing up to 700 °C which is desirable for laser devices requiring strict tolerances on operating wavelength. This is attributed to the simultaneous effect of the strain field, propagating from the seed layer to the active layer of the multilayer QD (MQD) and the indium atom gradient in the capping layer due to the presence of a quaternary InAlGaAs layer. Higher activation energy (of the order of ∼250 meV) even at 650 °C annealing temperature also signifies the stronger carrier confinement potential of the QDs. All these results demonstrate higher thermal stability of the emission peak of the devices using this QD structure.  相似文献   

17.
Photoreaction centers facilitate the solar energy transduction at the heart of photosynthesis and there is increasing interest in their incorporation into biohybrid devices for solar energy conversion, sensing, and other applications. In this work, the self‐assembly of conjugates between engineered bacterial reaction centers (RCs) and quantum dots (QDs) that act as a synthetic light harvesting system is described. The interface between protein and QD is provided by a polyhistidine tag that confers a tight and specific binding and defines the geometry of the interaction. Protein engineering that changes the pigment composition of the RC is used to identify Förster resonance energy transfer as the mechanism through which QDs can drive RC photochemistry with a high energy transfer efficiency. A thermodynamic explanation of RC/QD conjugation based on a multiple/independent binding model is provided. It is also demonstrated that the presence of multiple binding sites affects energy coupling not only between RCs and QDs but also among the bound RCs themselves, effects which likely stem from restricted RC dynamics at the QD surface in denser conjugates. These findings are readily transferrable to many other conjugate systems between proteins or combinations of proteins and other nanomaterials.  相似文献   

18.
Ultrasensitive Pb2+ detection by glutathione-capped quantum dots   总被引:4,自引:0,他引:4  
Ali EM  Zheng Y  Yu HH  Ying JY 《Analytical chemistry》2007,79(24):9452-9458
Water-soluble and stable quantum dots (QDs), CdTe and CdZnSe, are applied for ultrasensitive Pb(2+) detection. These QDs are capped with glutathione (GSH) shells. GSH and its polymeric form, phytochelatin, are employed by nature to detoxify heavy metal ions. As a result of specific interaction, the fluorescence intensity of GSH-capped QDs is selectively reduced in the presence of heavy metal ions such as Pb(2+). The detection limit of Pb(2+) is found to be 20 nM due to the superior fluorescence properties of QDs. Detailed studies by spectroscopy, microscopy, and dynamic light scattering show that competitive GSH binding of Pb(2+) with the QD core changed both the surface and photophysical properties of the QDs. Fluorescence of QDs is quenched, and QD aggregation occurs. Coupling the GSH-capped QDs with a high-throughput detection system, we have developed a simple scheme for quick and ultrasensitive Pb(2+) detection without the need for additional electronic devices. In the presence of ionic mixtures, our system is still capable of Pb(2+) detection with a detection limit as low as 40 nM. The system only becomes less sensitive when the ionic mixture is present at a very high concentration (i.e., > or =50 microM).  相似文献   

19.
A strategy is reported for the controlled assembly of organic‐inorganic heterostructures consisting of individual single‐walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT‐QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD‐based optoelectronic and light‐energy conversion devices.  相似文献   

20.
We have demonstrated the fabrication and characterization of hybrid CdSe/ZnS quantum dot (QD)–InGaN blue LEDs. The chemically synthesized red light (${lambda}$ = 623 nm) QD solutions with different concentrations were dropped onto the blue InGaN LEDs with an emission peak of 453 nm and the turn-on voltage of 2.6 V. In this configuration, the CdSe/ZnS core/shell QDs played the role of a color-conversion center. It was clearly observed that the emission intensity from QDs was increased with increasing QD concentration. With a QD concentration of 10 mg/ml in toluene was incorporated, the ratio of emission intensity of QDs to that of InGaN quantum wells reached 0.17, whereas the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates greatly shifted to (0.29, 0.14). From the spatial mapping of electroluminescence spectra, the decrease of the intensity of $E_{{rm QW}}$ seems to be faster than that of $E_{{rm QD}}$, which suggests that the QD film thickness may be thicker in the edge of the surface of InGaN chip. There will, therefore, convert higher proportion of blue light to red light. Also, the resin-encapsulated hybrid LEDs have a divergence angle (the full angle at $1/e^2$ intensity) of about 20 $^{circ}$ as the device is operated at 10 mA. Furthermore, under the injection current of 20 mA and room temperature, this device can be operated for more than 1000 h without any obvious degradation. From our results, it can be proven that the synthesized QDs are promising nanophosphors for color-conversion applications of solid-state LEDs. However, to more efficiently convert the blue light to red light, a denser QD solution with higher quantum yield must be utilized.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号