首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control flow models, such as UML activity diagrams or Petri nets, are widely accepted modeling languages used to support quality assurance activities in single system engineering as well as software product line (SPL) engineering. Quality assurance in product line engineering is a challenging task since a defect in a domain artifact may affect several products of the product line. Thus, proper quality assurance approaches need to pay special attention to the product line variability. Automation is essential to support quality assurance approaches. A prerequisite for automation is a profound formalization of the underlying control flow models and, in the context of SPLs, of the variability therein.  相似文献   

2.
Fluidization is an appealing relaxation technique based on the removal of integrality constraints in order to ease the analysis of discrete Petri nets. The result of fluidifying discrete Petri nets are the so called Fluid or Continuous Petri nets. As with any relaxation technique, discrepancies among the behaviours of the discrete and the relaxed model may appear. Moreover, such discrepancies may have a comparatively bigger effect when the population of the system, the marking in Petri net terms, is “relatively” small. This paper proposes two complementary approaches to obtain a better fluid approximation of discrete Petri nets. The first one focuses on untimed systems and is based on the addition of places that are implicit in the untimed discrete system but not in the continuous. The idea is to cut undesired spurious solutions whose existence worsens the fluidization. The second one focuses on a particular situation that can severely affect the quality of fluidization in timed systems. Namely, such a situation arises when the enabling degree of a transition is equal to 1. This last approach aims to alleviate such a state of affairs, which is termed the bound reaching problem, on systems under infinite servers semantics.  相似文献   

3.
The paper deals with distributed Multi-Agent Reconfigurable Embedded Control Systems following the International Industrial Standard IEC61499 in which a Function Block (abbreviated by FB) is an event-triggered software component owning data and a control application is a network of distributed blocks that should satisfy functional and temporal properties according to user requirements. We define an architecture of reconfigurable multi-agent systems in which a Reconfiguration Agent is affected to each device of the execution environment to apply local reconfigurations, and a Coordination Agent is proposed for coordinations between devices in order to guarantee safe and adequate distributed reconfigurations. A Communication Protocol is proposed to handle coordinations between agents by using well-defined Coordination Matrices. We specify both reconfiguration agents to be modelled by nested state machines, and the Coordination Agent according to the formalism Net Condition-Event Systems (Abbreviated by NCES) which is an extension of Petri nets. To validate the whole architecture, we check by applying the model checker SESA in each device functional and temporal properties to be described according to the temporal logic “Computation Tree Logic”. We have also to check all possible coordinations between devices by verifying that whenever a reconfiguration is applied in a device, the Coordination Agent and other concerned devices react as described in user requirements. We present a tool applying simulations of this distributed architecture in order to check interactions and reactivities of agents. The paper’s contributions are applied to two Benchmark Production Systems available in our research laboratory.  相似文献   

4.
In this paper we tackle the decidabilityof marking reachability for a hybrid formalism based on Petrinets. The model we consider is the untimed version of First–OrderHybrid Petri Nets: it combines a discrete Petri net and a continuousPetri net, the latter being a fluid version of a usual discretePetri net. It is suggested that the decidability results shouldbe pursued exploiting a hierarchy of models as it has been donein the framework of Hybrid Automata. In this paper we definethe class of Single–Rate Hybrid Petri Nets: the continuousdynamics of these nets is such that the vector of the markingderivatives of the continuous places is constant but for a scalarfactor. This class of nets can be seen as the counterpart oftimed automata with skewed clocks. We prove that the reachabilityproblem for this class can be reduced to the reachability problemof an equivalent discrete net and thus it is decidable.  相似文献   

5.
Coloured Petri Nets (CPNs) is a language for the modelling and validation of systems in which concurrency, communication, and synchronisation play a major role. Coloured Petri Nets is a discrete-event modelling language combining Petri nets with the functional programming language Standard ML. Petri nets provide the foundation of the graphical notation and the basic primitives for modelling concurrency, communication, and synchronisation. Standard ML provides the primitives for the definition of data types, describing data manipulation, and for creating compact and parameterisable models. A CPN model of a system is an executable model representing the states of the system and the events (transitions) that can cause the system to change state. The CPN language makes it possible to organise a model as a set of modules, and it includes a time concept for representing the time taken to execute events in the modelled system. CPN Tools is an industrial-strength computer tool for constructing and analysing CPN models. Using CPN Tools, it is possible to investigate the behaviour of the modelled system using simulation, to verify properties by means of state space methods and model checking, and to conduct simulation-based performance analysis. User interaction with CPN Tools is based on direct manipulation of the graphical representation of the CPN model using interaction techniques, such as tool palettes and marking menus. A license for CPN Tools can be obtained free of charge, also for commercial use.  相似文献   

6.
The product form results recently published for stochastic Petri nets are combined with the well-known product form results for queueing networks in the model formalism of queueing Petri nets yielding the class of product form queueing Petri nets. This model class includes stochastic Petri nets with product form solution and BCMP queueing networks as special cases. We introduce an arrival theorem for the model class and present an exact aggregation approach extending known approaches from queueing networks.  相似文献   

7.
We present SNIP, an efficient model checker for software product lines (SPLs). Variability in software product lines is generally expressed in terms of features, and the number of potential products is exponential in the number of features. Whereas classical model checkers are only capable of checking properties against each individual product in the product line, SNIP exploits specifically designed algorithms to check all products in a single step. This is done by using a concise mathematical structure for product line behaviour, that exploits similarities and represents the behaviour of all products in a compact manner. Specification of an SPL in SNIP relies on the combination of two specification languages: TVL to describe the variability in the product line, and fPromela to describe the behaviour of the individual products. SNIP is thus one of the first tools equipped with specification languages to formally express both the variability and the behaviours of the products of the product line. The paper assesses SNIP and suggests that this is the first model checker for SPLs that can be used outside the academic arena.  相似文献   

8.
Testing software product lines (SPLs) is very challenging due to a high degree of variability leading to an enormous number of possible products. The vast majority of today??s testing approaches for SPLs validate products individually using different kinds of reuse techniques for testing. Because of their reusability and adaptability capabilities, model-based approaches are suitable to describe variability and are therefore frequently used for implementation and testing purposes of SPLs. Due to the enormous number of possible products, individual product testing becomes more and more infeasible. Pairwise testing offers one possibility to test a subset of all possible products. However, according to the best of our knowledge, there is no contribution discussing and rating this approach in the SPL context. In this contribution, we provide a mapping between feature models describing the common and variable parts of an SPL and a reusable test model in the form of statecharts. Thereby, we interrelate feature model-based coverage criteria and test model-based coverage criteria such as control and data flow coverage and are therefore able to discuss the potentials and limitations of pairwise testing. We pay particular attention to test requirements for feature interactions constituting a major challenge in SPL engineering. We give a concise definition of feature dependencies and feature interactions from a testing point of view, and we discuss adequacy criteria for SPL coverage under pairwise feature interaction testing and give a generalization to the T-wise case. The concept and implementation of our approach are evaluated by means of a case study from the automotive domain.  相似文献   

9.
This paper proposes an approach to modular modelling and simulation of complex time-critical systems. The modelling language is represented by Merlin and Farber’s Time Petri Nets (TPNs) augmented with inhibitor arcs and modular constructs borrowed from the Petri Net Markup Language (PNML) interchange format. Analysis techniques depend on Temporal Uncertainty Time Warp (TUTW), a time warp algorithm capable of exploiting temporal uncertainty in general optimistic simulations over a networked context. A key feature of the approach is the fact that TPN models naturally exhibit a certain degree of temporal uncertainty which the TUTW control engine can exploit to achieve good speedup without a loss in the accuracy of the simulation results. The developed TUTW/TPN kernel is demonstrated by modelling and simulation of a real-time system example.A preliminary version of this paper was presented at 38th SCS Annual Simulation Symposium, April 4–6, 2005, San Diego (CA), IEEE Computer Society, pp. 233–240. Franco Cicirelli achieved a PhD in computer science from the University of Calabria (Unical), DEIS—department of electronics informatics and systems science. As a postdoc, he is making research on agent and service paradigms for the development of distributed systems, parallel simulation, Petri nets, distributed measurement systems. He holds a membership with ACM. Angelo Furfaro, PhD, is a computer science assistant professor at Unical, DEIS, teaching object-oriented programming. His research interests are centred on: multi-agent systems, modeling and analysis of time-dependent systems, Petri nets, parallel simulation, verification of real-time systems, distributed measurement systems. He is a member of ACM. Libero Nigro is a full professor of computer science at Unical, DEIS, where he teaches object-oriented programming, software engineering and real-time systems courses. He directs the Software Engineering Laboratory (www.lis.deis.unical.it). His current research interests include: software engineering of time-dependent and distributed systems, real-time systems, Petri nets, modeling and parallel simulation of complex systems, distributed measurement systems. Prof. Nigro is a member of ACM and IEEE.  相似文献   

10.
This work presents a methodology to formally model and to build three-dimensional interaction tasks in virtual environments using three different tools: Petri Nets, the Interaction Technique Decomposition taxonomy, and Object-Oriented techniques. User operations in the virtual environment are represented as Petri Net nodes; these nodes, when linked, represent the interaction process stages. In our methodology, places represent all the states an application can reach, transitions define the conditions to start an action, and tokens embody the data manipulated by the application. As a result of this modeling process we automatically generate the core of the application's source code. We also use a Petri Net execution library to run the application code. In order to facilitate the application modeling, we have adapted Dia, a well-known graphical diagram editor, to support Petri Nets creation and code generation. The integration of these approaches results in a modular application, based on Petri Nets formalism that allows for the specification of an interaction task and for the reuse of developed blocks in new virtual environment projects.  相似文献   

11.
Nets of active resources (AR nets) make up the dual syntax of Petri nets, in which places and transitions are combined into a general set of nodes, whereas a set of arcs, vice versa, is decomposed onto disjoint sets of consuming and producing arcs. Contrary to Petri nets, the object (token) in the AR nets can be considered as the passive and active agent simultaneously. It is shown that the uniform structure of the AR nets’ nodes provides new possibilities of modular simulation of systems. Different types of modules and ways of decomposition onto modules in the AR nets, as well as the properties of the equivalent replacements of modules, are investigated.  相似文献   

12.
Information systems, which are responsible for driving many processes in our lives (health care, the web, municipalities, commerce and business, among others), store information in the form of logs which is often left unused. Process mining, a discipline in between data mining and software engineering, proposes tailored algorithms to exploit the information stored in a log, in order to reason about the processes underlying an information system. A key challenge in process mining is discovery: Given a log, derive a formal process model that can be used afterward for a formal analysis. In this paper, we provide a general approach based on satisfiability modulo theories (SMT) as a solution for this challenging problem. By encoding the problem into the logical/arithmetic domains and using modern SMT engines, it is shown how two separate families of process models can be discovered. The theory of this paper is accompanied with a tool, and experimental results witness the significance of this novel view of the process discovery problem.  相似文献   

13.
Due to constant fluctuations in market demands, nowadays scheduling of flexible manufacturing systems is taking great importance to improve competitiveness. Coloured Petri Nets (CPN) is a high level modelling formalism which have been widely used to model and verify systems, allowing representing not only the system’s dynamic behaviour but also the information flow. One approach that focuses in performance optimization of industrial systems is the one that uses the CPN formalism extended with time features (Timed Coloured Petri Nets) and explores all the possible states of the model (state space) looking for states of particular interest under industrial scope. Unfortunately, using the time extension, the state space becomes awkward for most industrial problems, reason why there is a recognized need of approaches that could tackle optimization problems such as the scheduling of manufacturing activities without simplifying any important aspect of the real system. In this paper a timed state space approach for properties verification and systems optimization is presented together with new algorithms in order to get better results when time is used as a cost function for optimizing the makespan of manufacturing systems. A benchmarking example of a job-shop is modelled in CPN formalism to illustrate the improvements that can be achieved with the proposed implementations.  相似文献   

14.
The aim of this paper is to search for techniques to accelerate simulations exploiting the parallelism available in current multicomputers, and to use these techniques to study a class of Petri nets called high-level algebraic nets. These nets exploit the rich theory of algebraic specifications for high-level Petri nets. They also gain a great deal of modelling power by representing dynamically changing items as structured tokens whereas algebraic specifications turned out to be an adequate and flexible instrument for handling structured items. We focus on ECATNets (Extended Concurrent Algebraic Term Nets), a kind of high-level algebraic Petri nets with limited capacity places

Three distributed simulation techniques have been considered: asynchronous conservative, asynchronous optimistic and synchronous. These algorithms have been implemented in a network of workstations with MPI (Message Passing Interface). The influence that factors such as the characteristics of the simulated models, the organisation of the simulators and the characteristics of the target multicomputer have in the performance of the simulations have been measured and characterized

It is concluded that distributed simulation of ECATNets on a multicomputer system can in fact gain speedup over the sequential simulation, and this can be achieved even for small scale simulation models.  相似文献   

15.
Petri网是一种应用非常广泛的建模工具。首先给出了基本Petri网的概念,在此基础上对多种Petri网进行了广泛的研究,包括时间因素Petri网、有色Petri网、面向对象Petri网、模糊Petri网及受控Petri网,并针对每种Petri网的特点和应用范围进行了讨论,提出了Petri网当前发展的方向和急需解决的热点问题。  相似文献   

16.
We present a new approach to the modelling of time constrained systems. It is based on untimed high-level Petri nets using the concept of causal time. With this concept, the progression of time is modelled in the system by the occurrence of a distinguished event, tick, which serves as a reference to the rest of the system. In order to validate this approach as suitable for automated verification, a case study is provided and the results obtained using a model-checker on high-level Petri nets are compared with those obtained for timed automata using prominent tools. The comparison is encouraging and shows that the causal time approach is intuitive and modular. It also potentially allows for efficient verification.  相似文献   

17.
Software product lines (SPLs) are families of software systems sharing common assets and exhibiting variabilities specific to each product member of the family. Commonalities and variabilities are often represented as features organized in a feature model. Due to combinatorial explosion of the number of products induced by possible features combinations, exhaustive testing of SPLs is intractable. Therefore, sampling and prioritization techniques have been proposed to generate sorted lists of products based on coverage criteria or weights assigned to features. Solely based on the feature model, these techniques do not take into account behavioural usage of such products as a source of prioritization. In this paper, we assess the feasibility of integrating usage models into the testing process to derive statistical testing approaches for SPLs. Usage models are given as Markov chains, enabling prioritization of probable/rare behaviours. We used featured transition systems, compactly modelling variability and behaviour for SPLs, to determine which products are realizing prioritized behaviours. Statistical prioritization can achieve a significant reduction in the state space, and modelling efforts can be rewarded by better automation. In particular, we used MaTeLo, a statistical test cases generation suite developed at ALL4TEC. We assess feasibility criteria on two systems: Claroline, a configurable course management system, and Sferion?, an embedded system providing helicopter landing assistance.  相似文献   

18.
Software product line (SPL) is an approach used to develop a range of software products with a high degree of similarity. In this approach, a feature model is usually used to keep track of similarities and differences. Over time, as modifications are made to the SPL, inconsistencies with the feature model could arise. The first approach to dealing with these inconsistencies is refactoring. Refactoring consists of small steps which, when accumulated, may lead to large-scale changes in the SPL, resulting in features being added to or eliminated from the SPL. In this paper, we propose a framework for refactoring SPLs, which helps keep SPLs consistent with the feature model. After some introductory remarks, we describe a formal model for representing the feature model. We express various refactoring patterns applicable to the feature model and the SPL formally, and then introduce an algorithm for finding them in the SPL. In the end, we use a real-world case study of an SPL to illustrate the applicability of the framework introduced in the paper.  相似文献   

19.
The aim of this paper is to develop a unified approach for deriving complexity results for problems concerning conflict-free Petri nets. To do so, we first define a class of formulas for paths in Petri nets. We then show that answering the satisfiability problem for conflict-free Petri nets is tantamount to solving a system of linear inequalities (which is known to be in P). Since a wide spectrum of Petri net problems (including various fairness-related problems) can be reduced to the satisfiability problem in a straightforward manner, our approach offers an umbrella under which many Petri net problems for conflict-free Petri nets can be shown to be solvable in polynomial time. As a side-product, our analysis provides evidence as to why detecting unboundedness for conflict-free Petri nets is easier (provided P ≠ NP) than for normal and sinkless Petri nets (which are two classes that properly contain conflict-free Petri nets). A preliminary version was presented at the 14th International Conference on Application and Theory of Petri Nets, Chicago, IL, USA, June 1993.  相似文献   

20.
Deriving products from a Feature Model (FM) for testing Software Product Lines (SPLs) is a hard task. It is important to select a minimum number of products but, at the same time, to consider the coverage of testing criteria such as pairwise, among other factors. To solve such problems Multi-Objective Evolutionary Algorithms (MOEAs) have been successfully applied. However, to design a solution for this and other software engineering problems can be very difficult, because it is necessary to choose among different search operators and parameters. Hyper-heuristics can help in this task, and have raised interest in the Search-Based Software Engineering (SBSE) field. Considering the growing adoption of SPL in the industry and crescent demand for SPL testing approaches, this paper introduces a hyper-heuristic approach to automatically derive products to variability testing of SPLs. The approach works with MOEAs and two selection methods, random and based on FRR-MAB (Fitness Rate Rank based Multi-Armed Bandit). It was evaluated with real FMs and the results show that the proposed approach outperforms the traditional algorithms used in the literature, and that both selection methods present similar performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号