首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考察了丙烯在SO^2-4/MxOy固体超强酸催化剂上的齐过程。实验表明,催化剂的活性顺序为SO^2-4/ZrO2/TiO2,而SO^2-/Fe2O3催化几乎无活性。FT-IR表明,SO^2-4/ZrO2催化剂具有超强酸的3个特征吸收峰,即1050、1130和1220cm^-1。XRD分析表明,SO2-4/ZrO2为非结晶态、而未浸H2SO4的ZrO2没有上述3个特征吸收峰,且以晶态存在。  相似文献   

2.
主要介绍了固体超强酸催化剂的制备方法及对其改性的研究进展,综述了固体超强酸的应用,并对固体超强酸的开发应用前景进行了展望.  相似文献   

3.
SO42-/MxOy型固体超强酸催化剂具有不腐蚀设备、易分离、制备简单等优点,作为一类新型的绿色催化材料,在合成工业上有广泛的应用前景。但是这种催化剂也存在易积炭、稳定性差、价格昂贵等缺点,因此对SO42-/MxOy型固体超强酸催化剂的改性研究已成为国内外研究的热点。本文主要介绍了SO42-/MxOy型固体超强酸催化剂的改性研究。  相似文献   

4.
介绍了固体超强酸催化剂制备的研究进展,重点阐述了在SO42-/MxOy型固体超强酸催化剂的合成、改性、应用等方面的研究成果,并对固体超强酸催化剂未来的研究和应用前景进行了展望。  相似文献   

5.
介绍固体超强酸催化剂的发展、特点、应用及改性研究方向,研究催化剂酸强度低、催化剂易失活和稳定性差等问题,并提出解决方案。通过对国内外SO_4~(2-)/M_xO_y型固体超强酸催化剂的研究,分析向载体中引入稀土元素、分子筛、其他金属、纳米材料和交联剂对固体超强酸催化剂催化活性、热稳定性、酸性、比表面积和晶型等的影响,综述采用S2O2-8或硫酸盐替换SO_4~(2-)作为催化剂活性组分对催化剂的催化活性、酸强度及结构等的影响以及引入过渡金属(贵金属)形成的双官能团对催化剂结构与活性的影响,对制约SO_4~(2-)/M_xO_y型固体超强酸催化剂研究与工业化应用的催化剂寿命、稳定性、机械强度、合成方法、催化活性及催化剂再生等问题进行探讨。  相似文献   

6.
SO_4~(2-)/M_xO_y型固体超强酸催化剂改性研究进展   总被引:2,自引:1,他引:1  
综述了国内外有关SO24-/MxOy型固体超强酸催化剂在载体、促进剂以及贵金属的引入等方面的改性方法。分析了SO24-/MxOy型固体超强酸催化剂的失活原因,详细介绍了载体中引入纳米材料、稀土元素、其他金属元素(Al,Ga等)、交联剂、分子筛等对催化剂活性和稳定性的影响;综述了用S2O28-,稀土离子,其他离子(Ag+,Ni2+,Al3+,Sn4+等),硫酸盐,WO3,MoO3,NO3-等代替SO42-作促进剂,以及引入贵金属Pt和Pd改性方面的研究进展;最后展望了固体超强酸催化剂的发展前景。  相似文献   

7.
马允 《应用化工》2014,(10):1879-1883,1890
概述了SO2-4/MxOy型固体超强酸催化剂的分类、制备方法及表征手段,详细说明了通过促进剂、催化剂载体及引入金属或离子等对SO2-4/ZrO2型固体超强酸改性方面的研究进展,指出目前在SO2-4/MxOy型固体超强酸催化剂研究方面存在的问题,展望了SO2-4/MxOy型固体超强酸催化剂的发展前景。  相似文献   

8.
SO2-4/M x O y型固体超强酸型催化剂具有活性高、污染小、不腐蚀设备和可重复使用等优点,是一种典型的环境友好催化剂。分析微乳液法、水热法、回流老化法和模板法等制备方法对催化剂催化性能的影响,介绍催化剂载体改性、引入金属或分子筛、促进剂等改性方面的研究进展,综述SO2-4/M x O y型固体超强酸催化剂在有机反应包括异构化反应、酯化反应、烷基化反应、酰化反应、脱水反应和齐聚反应中的应用。今后研究重点是如何利用新技术改进催化剂的制备过程和提高固体酸比表面积。  相似文献   

9.
论述S0_4~2-/M_xO_y型固体超强酸催化剂的制备及其制备条件对酯化反应的影响,根据不同的产品选择不同酸强度的催化剂。  相似文献   

10.
本文以苯酐加辛醇合成DOP为研究对象,在单组元SO42-/MxOy型固体超强酸研究的基础上,制成SO42-/Ti-Al-Sn-O型固体超强酸,对DOP合成的催化活性比单元或两元固体超强酸有明显的提高,在175℃/6h的反应条件下可使DOP合成反应完全。  相似文献   

11.
研究了丙烯在磷酸盐催化剂上催化齐聚过程,考察了不同条件制备的催化剂的性能,以及不同反应条件对催化活性和选择性的影响。在催化剂装量为48cm~3的连续积分反应器上稳定性试验表明,当反应温度463~468K,压力4.0MPa,丙烯液时空速1.0h~(-1),C_3~=/N_2体积比为60/40时,连续运转500h,平均转化率75%,壬烯选择性60%,十二烯选择性20%。  相似文献   

12.
丙烯齐聚催化剂的反应性能   总被引:1,自引:0,他引:1  
研究了丙烯在磷盐催化剂上催化齐聚过程,考察了反应温度、反应压力、接触时间及进料丙烯与氮气摩尔比对反应转化率和选择性的影响。结果表明,在合适的工艺条件下,丙烯转化率约76%,壬烯选择性约60%,十二烯选择性约30%。  相似文献   

13.
研究了丙烯在杂多酸(HPA)催化剂上的齐聚过程。考察了催化剂制备条件,例如载体选择、杂多酸种类和浓度及工艺条件、反应温度对丙烯齐聚催化剂性能的影响。结果表明,合适的载体是大孔硅胶,磷钨酸和硅钨酸催化剂活性最高,而磷钼酸催化剂几乎无活性;催化活性随杂多酸浓度和反应温度的提高而提高。当使用25%酸钨酸/硅胶浸渍型催化剂时,在P=4.0MPa,T=150℃,LHSV(液时空速)=1.0h^-1,丙烯浓度  相似文献   

14.
固体超强酸制备条件对萘齐聚反应的影响   总被引:3,自引:3,他引:0  
研究了固体超强酸催化剂制备条件对催化剂性质及萘齐聚反应的影响。用热台偏光显微镜观察了固体超强酸SO4^2-/ZrO2焙烧过程中形态结构变化及晶相转变过程,并结合萘齐聚反应前后形态结构改变考察了催化剂结晶对其性质的影响。实验发现晶体结构优先在气孔内生成,其萘齐聚反应催化活性很低。另外研究了制备固体超强酸所用原料、酸浓度和焙烧温度等因素对催化剂的性质以及萘齐聚反应的影响。  相似文献   

15.
复合固体超强酸SO2-4/TiO2 Al2O3(H0≤-14.52)对DOP的合成有较高的催化活性,苯酐2h的转化率超过99%,并找出了催化剂制备的最佳条件。该催化剂具有耐水性强、可重复使用、再生容易、不污染环境等优点。  相似文献   

16.
采用固体超强酸催化剂SO2-4/ZrO2催化合成偏苯三酸三(2 乙基)己酯,考察了催化剂制备条件对催化活性的影响,探讨了催化剂用量、原料配比、反应时间等因素与酯化深度的关系,确定了最佳工艺参数。  相似文献   

17.
研究了 Si O2 的引入对固体超强酸催化剂 SO42 -/Zr O2 性能的影响 ,并将 SO42 -/Zr O2 -Si O2 应用到萘齐聚反应中以制备中间相沥青 .用热台偏光显微镜观察了固体超强酸 SO42 -/Zr O2及 SO42 -/Zr O2 - Si O2 在焙烧过程中形态结构变化及晶相转变过程 .另外发现 ,适量 Si O2 的引入提高了固体超强酸 SO42 -/Zr O2 晶相转变的温度 ,催化剂中 SO42 -的分解温度有较大提高 ,催化剂的TG- DTG曲线也有所变化 .固体超强酸焙烧温度、引入 Si O2 比例对催化剂的性质以及萘齐聚反应都会产生影响 ,对萘齐聚物的结构进行了初步分析 .  相似文献   

18.
固体超强酸SO4^2—/ZrO2催化合成对羟基苯甲酸乙酯   总被引:6,自引:0,他引:6  
谭晓军 《江苏化工》1997,25(6):14-15
以固体超强酸SO4^2-/ZrO2为催化剂合成了对羟基苯甲酸乙酯,并研究了催化剂等条件对反应的影响,在最佳反应条件下,酯收率达到80.1%。  相似文献   

19.
按不同 Zr/Al将 Al2 O3 引入 SO42 -/Zr O2 中制备固体超强酸催化剂 SO42 -/Zr O2 -Al2 O3 ,并将所得固体超强酸应用到萘齐聚反应中以制备中间相沥青 .用热台偏光显微镜观察了固体超强酸 SO42 -/Zr O2 及 SO42 -/Zr O2 - Al2 O3 在焙烧过程中形态结构变化及晶相转变过程 .研究发现 ,Al2 O3 引入量对固体超强酸 SO42 -/Zr O2 - Al2 O3 晶相转变温度产生影响 ;适量 Al2 O3 的引入使催化剂中 SO42 -分解温度有较大提高 ;催化剂的 TG- DTG曲线也有所变化 .固相超强酸焙烧温度和引入 Al2 O3 比例影响了萘转化率 .红外光谱分析表明 ,两种固体超强酸催化所得萘齐聚物结构基本相同  相似文献   

20.
WO3-TiO2-SO42-固体超强酸合成柠檬酸三丁酯   总被引:10,自引:1,他引:10  
用TiO2*nH2O和H2WO4混合,其中w(H2WO4)=10%,然后用c(H2SO4)=1mol/L的溶液浸渍,在550℃焙烧2h,可制得Ho≤-14.52的WO3-TiO2-SO42-固体超强酸催化剂,用于柠檬酸和正丁醇的酯化反应,实验结果表明最佳反应条件为反应温度155℃,醇酸物质的量比为3.9∶1,反应时间4h,催化剂用量占总投料质量的1.5%,柠檬酸的转化率达98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号