首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of Nd2O3 doping on the reaction process and sintering behavior of BaCeO3 is investigated. Formation of BaCeO3 is initiated at 800°C and completed at 1000°C. When Nd2O3 is added to the starting materials, the formation of BaCe1–xNdxO3–δ is delayed and the temperature for complete reaction is increased to 1100°C. Only a BaCe1-xNdxO3–δ solid solution with an orthorhombic crystal structure is present in the specimens for x ≤ 0.1. A secondary phase rich in Ce and Nd is formed within grains and at grain boundaries, when the Nd2O3 content is greater than the solubility limit (x ≥ 0.2). Pure BaCeO3 is difficult to sinter, even at 1500°C, and only a porous microstructure could be obtained. However, doping BaCeO3 with Nd2O3 markedly enhances its sinterability. The enhancement of the sinterability of Nd2O3-doped specimens at x ≤ 0.1 is attributed to the increase in the concentration of oxygen ion vacancies, which increases the diffusion rate. At x ≥ 0.2, the grain size is abnormally coarsened, which is caused by the formation of a liquid phase. While this liquid phase accelerates sintering, its beneficial effect on densification is counteracted by the segregation of the secondary grain-boundary phase which inhibits sintering.  相似文献   

2.
Phase stability, sinterability, and microwave dielectric properties of Bi2W2O9 ceramics and their cofireability with Ag, Cu, and Au electrodes have been investigated. Single-phase Bi2W2O9 powder was synthesized by solid-state reaction in air at 800°C for 3 days. X-ray powder diffraction data show Bi2W2O9 to have an orthorhombic crystal structure described by the noncentrosymmetric space group Pna 21, with lattice parameters a =5.4401(8), b =5.4191(8), c =23.713(4) Å. Ceramics fired at temperatures up to 865°C remain single-phase but above this temperature ferroelectric Bi2WO6 appears as a secondary phase. The measured relative permittivity of Bi2W2O9 ceramics increases continuously from 28.6 to 40.7 for compacts fired between 860° and 885°C. The bulk relative permittivity of Bi2W2O9 corrected for porosity was calculated as 41.3. Bi2W2O9 ceramics fired up to 875°C exhibit moderate quality factors, Q × f r, ∼7500–7700 GHz and negative temperature coefficient of resonant frequency, ∼−54 to −63 ppm/°C. Chemical compatibility experiments show Bi2W2O9 ceramics to react with both Ag and Cu electrodes, but to form good contacts with Au electrodes.  相似文献   

3.
The results obtained from the sintering of Al2O3–50TiC (in weight percent) composite in the temperature range from 1650° to 1800°C with addition of Y2O3 are presented. Densification is accelerated by the formation of liquid at temperatures above 1750°C, and 99% of theoretical density can be achieved by vacuum sintering at 1800°C for 15 min. The liquid presented at the sintering temperature is crystallized to YAG (Y3Al5O12) during cooling.  相似文献   

4.
High-temperature piezoelectric ceramics based on W6+-doped Bi4Ti3O12 (W-BIT) were prepared by both the conventional mixing oxides and the chemical coprecipitation methods. Sintering was carried out between 800° and 1150°C in air. A rapid densification, >99% of the theoretical density (rhoth) at 900°C/2 h, took place in the chemically prepared W6+-doped Bi4Ti3O12 ceramics, whereas conventionally prepared BIT-based materials achieved a lower maximum density, ∼94% of rhoth, at higher temperature (1050°C). The microstructure study revealed a platelike morphology in both materials. Platelike grains were larger in the conventionally prepared W-BIT-based materials. The sintering behavior could be related both to the agglomeration state of the calcined powders and to the enlargement of the platelets at high temperature. The W6+-doped BIT materials showed an electrical conductivity value 2-3 orders of magnitude lower than undoped samples. The electrical conductivity increased exponentially with the aspect ratio of the platelike grains. The addition of excess TiO2 produced a further decrease of the electrical conductivity.  相似文献   

5.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

6.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

7.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

8.
Li2CO3 was added to Mg2V2O7 ceramics in order to reduce the sintering temperature to below 900°C. At temperatures below 900°C, a liquid phase was formed during sintering, which assisted the densification of the specimens. The addition of Li2CO3 changed the crystal structure of Mg2V2O7 ceramics from triclinic to monoclinic. The 6.0 mol% Li2CO3-added Mg2V2O7 ceramic was well sintered at 800°C with a high density and good microwave dielectric properties of ɛ r=8.2, Q × f =70 621 GHz, and τf=−35.2 ppm/°C. Silver did not react with the 6.0 mol% Li2CO3-added Mg2V2O7 ceramic at 800°C. Therefore, this ceramic is a good candidate material in low-temperature co-fired ceramic multilayer devices.  相似文献   

9.
The effects of B2O3 addition on the sintering behavior and the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 (BST) ceramics were investigated. The dielectric and ferroelectric properties of a BST sample with 0.5 wt% B2O3 sintered at <1150°C were as good as those of undoped BST sintered at 1350°C, and the dielectric loss was better. When >1.0 wt% B2O3 was added to BST, the overdoped B2O3 did not form a liquid phase or volatilize; it remained in the samples and formed a secondary phase that lowered the sintering behavior and the dielectric and ferroelectric properties of the BST.  相似文献   

10.
The fracture toughness and hardness of an Al2O380WC10Co composite were investigated in air at elevated temperatures. The primary phases in the composite were WC, α-Al2O3, and Co3W3C, but small amounts of Co and C (graphite) appeared at elevated temperatures, related to decomposition of the Co3W3C phase. The fracture toughness of the composite was constant with increasing temperature up to 330°C and then increased in the range 400° to 550°C. A transition of brittle to ductile behavior occurred at about 700°C. The enhancement of fracture toughness at elevated temperature is attributed to the decomposition of Co3W3C to Co and C, and enhanced crack deflection and bridging. Decreases in hardness with increasing temperature are attributed to the softening of WC matrix and decomposition of Co3W3C.  相似文献   

11.
MgO addition to 3 mol% Y2O3–ZrO2 resulted in enhanced densification at 1350°C by a liquid-phase sintering mechanism. This liquid phase resulted from reaction of MgO with trace impurities of CaO and SiO2 in the starting powder. The bimodal grain structure thus obtained was characterized by large cubic ZrO2 grains with tetragonal ZrO2 precipitates, which were surrounded by either small tetragonal grains or monoclinic grains, depending on the heat-treatment schedule.  相似文献   

12.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

13.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

14.
The phase equilibria of the systems SrO-CuO and SrO-1/2Bi2O3 were studied by X-ray diffraction analysis of quenched powder samples. The compounds SrCuO2 and Sr2CuO3 melt incongruently at 1085° and 1225°C, respectively. The newly found compound Sr6Bi2O9 decomposes at 965°C into SrO and Sr3Bi2O6 melts incongruently into SrO and liquid at 1210°C. SrBi2O4 undergoes a phase transition at ∼825°C, and although both are nonstoichiometric, the low-temperature phase is slightly poorer in SrO with 33.5 mol% SrO than the high-temperature phase.  相似文献   

15.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

16.
Bi2Sr2CaCu2O8 was prepared using the mixed oxide-carbonate method and sintered at temperatures ranging from 850° to 911°C. The samples were characterized for density, mechanical strength, phase composition, microstructure, and superconducting transition temperatures. A unique retrograde densification characteristic is demonstrated in the temperature range 850° to 890°C whereby the material first becomes less dense as the sintering temperature is raised, and only in a narrow temperature range from 900° to 905°C does the material densify then with the formation of a liquid phase. The retrograde densification mechanism is shown to be that of the formation of thin platelike crystallites which grow in a randomly oriented fashion, thus pushing the structure apart. This retrograde densification, coupled with a narrow sintering range overlapping the melting temperature, makes this compound a difficult one to process.  相似文献   

17.
Perovskite Pb(Fe2/3W1/3)O3 (PFW) was prepared via a mechanical activation-assisted synthesis route from mixed oxides of PbO, Fe2O3, and WO3. The mechanically activated oxide mixture, which exhibited a specific area of >10 m2/g, underwent phase conversion from nanocrystalline lead tungstate (PbWO4) and pyrochlore (Pb2FeWO6.5) phases on sintering to yield perovskite PFW, although the formation of perovskite phase was not triggered by mechanical activation. When heated to 700°C, >98% perovskite phase was formed in the mechanically activated oxide mixture. The perovskite phase was sintered to a density of ∼99% of theoretical density at 870°C for 2 h. The sintered PFW exhibited a dielectric constant of 9800 at 10 kHz, which was ∼30% higher than that of the PFW derived from the oxide mixture that was not subjected to mechanical activation.  相似文献   

18.
The preparation of near stoichiometric spinel and alumina-rich spinel composites from Al2O3and MgO powders with the addition of Na3AlF6up to 4 wt% in the temperature range 700°–1600°C was studied; 98 wt% spinel containing 72 wt% Al2O3can be produced from the mixture of 72 wt% (50 at.%) Al2O3+ 28 wt% (50 at.%) MgO powders with the addition of 1 wt% Na3AlF6fired at 1300°C for 1 h. Spinels containing 81–85 wt% Al2O3can be produced from either the mixture of 90 wt% (78 at.%) Al2O3+ 10 wt% (22 at.%) MgO or the mixture of 95 wt% (88 at.%) Al2O3+ 5 wt% (12 at.%) MgO powders with the addition of 4 wt% Na3AlF6in the temperature range 1300°–1600°C by using a torch-flame firing for 3 min, followed by quenching in water, while the same system under slow cooling in a furnace results in spinel containing 74–76 wt% Al2O3. Microscopic studies indicate that the alumina-rich spinel composites consist of a continuous majority spinel phase and an isolated minority corundum phase, regardless of slow cooling in a furnace or quenching in water.  相似文献   

19.
Composites of BaFe12O19 particles dispersed throughout a 3-mol%-yttria-doped zirconia (3Y-TZP) matrix have been prepared using the pressureless reactive sintering of 3Y-TZP, BaCO3, and γ-Fe2O3 powders. The reaction behavior of the mixed powder was studied with an in situ , high-temperature powder X-ray diffraction technique. The composite that was sintered at 1300°C consisted of submicrometer-sized 3Y-TZP grains and BaFe12O19 particles; the size of the 3Y-TZP grains was ∼100-300 nm, and the size of the BaFe12O19 particles was ∼200-500 nm. Based on the grain size, most of the BaFe12O19 grains presumably had a single-magnetic-domain structure. The 3Y-TZP/20-wt%-BaFe12O19 composite showed high magnetization and coercivity values, despite the low concentration of ferromagnetic phase. Preliminary mechanical tests revealed that the composite possessed moderately good mechanical properties.  相似文献   

20.
The effect of rare-earth oxide additives on the densification of silicon nitride by pressureless sintering at 1600° to 1700°C and by gas pressure sintering under 10 MPa of N2 at 1800° to 2000°C was studied. When a single-component oxide, such as CeO2, Nd2O3, La2O3, Sm2O3, or Y2O3, was used as an additive, the sintering temperature required to reach approximate theoretical density became higher as the melting temperature of the oxide increased. When a mixed oxide additive, such as Y2O3–Ln2O3 (Ln=Ce, Nd, La, Sm), was used, higher densification was achieved below 2000°C because of a lower liquid formation temperature. The sinterability of silicon nitride ceramics with the addition of rare-earth oxides is discussed in relation to the additive compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号