首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
丙烷氨氧化制丙烯腈工艺以及催化剂研究进展   总被引:1,自引:0,他引:1  
由于原料丙烯的短缺以及对丙烯腈需求的不断增加,本文提出一种以丙烷为原料的丙烯腈生产路线,并主要介绍了丙烷氨氧化反应的两种工艺和几种有发展前景的催化剂,为丙烯腈生产提供了一条具有经济吸引力的新路线。  相似文献   

2.
V2O5/MgF2 catalysts with V2O5 contents ranging from 2.1 to 15.7 wt% were prepared, and the influence of the V2O5 content of the V2O5/MgF2 catalyst on the structure and activity for the ammoxidation of 3-picoline was investigated. XRD data indicate that V2O5 is in a highly dispersed state though segregation of V2O5 into tiny crystallites occurs at and above 8 wt% V2O5. The 3-picoline ammoxidation activity increased with an increase in V2O5 content due not only to the species arising out of interaction of V2O5 and MgF2, but also to the presence of V2O5 microcrystals in the catalysts.  相似文献   

3.
N2O emission from cropland in China   总被引:1,自引:0,他引:1  
Based on the regionalization of uplands and paddy fields in China, the crop intensity in each region and the available field measurements, N2O emission from cropland in China in 1995 was estimated to be 398 Gg N, in which, 310 Gg N was from uplands, accounting for 78% of the total. 88 Gg N–N2O was emitted from paddy fields with 35 Gg N emitted during the rice growing season and 53 Gg N emitted during upland crop season. N2O emission from upland and from paddy field during upland land crop season accounted for 91% of the total emission.  相似文献   

4.
Selective catalytic reduction (SCR) of N2O with C2H6 took place effectively over Fe ion-exchanged BEA zeolite catalyst (Fe-BEA) even in the presence of excess oxygen. The mechanism in the SCR of N2O with C2H6 over Fe-BEA catalyst was studied by a transient response experiment and an in situ DRIFT spectroscopy. No oxidation of C2H6 by O2 took place below 350 °C (in C2H6/O2). In the N2O/C2H6/O2 system, however, it was found that the reaction of C2H6 with O2 was drastically enhanced by the presence of N2O even at low temperatures (200-300 °C). Therefore, it was concluded that N2O played an important role in the oxidation of C2H6 (i.e., activation of C2H6 at an initial step). On the basis of these findings, the mechanism in the SCR of N2O with C2H6 is discussed.  相似文献   

5.
The purpose of this work is to draw attention to the plasma kinetics in a nitrogen-oxygen mixture. The model includes the plasma chemistry module and the circuit module investigating the electrical and the physical characteristics of high-pressure homogenous pulsed discharge. The fundamental chemistry governing ozone generation developed in this work is based on a full set of processes regrouped in 117 reactions involving 19 charged particles, atomic, and molecular species. The results of simulations show the temporal variation of the discharge electrical parameters and the effect of the voltage applied to ozone production. The role played by different reactions and species is also given by analyzing the time evolution of species concentrations, as well as the ozone production and loss terms.  相似文献   

6.
Fe-modified ZSM-5 zeolites (Si/Al = 25) were prepared by adopting the liquid ion-exchange method with nitrate and oxalate of iron as Fe precursors and their catalytic performance was studied in the N2O decomposition reaction. The results of FT-IR and H2-TPR investigations indicated that (i) part of the iron ions could replace Brönsted acid protons at the straight channel wall (α sites), intersection of straight and sinusoidal channels (β sites), and sinusoidal channel wall (γ sites) within the ZSM-5 zeolite; and (ii) different Fe precursors gave rise to various distributions of α, β, and γ sites. We observed that the Fe-ZSM-5 catalyst prepared with iron oxalate as Fe precursor outperformed the ones prepared with iron nitrate as Fe precursor in the direct decomposition of N2O. Furthermore, the catalytic activity of iron ions located at the α sites was higher than those of iron ions located at the β and γ sites.  相似文献   

7.
The decomposition of NO and of N2O over a CuZSM-5 zeolite and a Fe-mordenite, respectively, has been studied using tracer techniques. The results demonstrate the high mobility of the lattice oxygen ions in self-diffusion. They afford a possible explanation for the problem of how two extralattice oxygens located at positions remote from each other may combine to form the O2 molecules which are spontaneously desorbed in these redox reactions. They show that a portion of the lattice oxygen mixes into the O2 released on decomposition. The data also show that N18O and N2 18O undergo exchange with the catalyst oxygen under reaction conditions.On leave from Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, Hungary.  相似文献   

8.
Diffusion analysis of N2O cycling in a fertilized soil   总被引:1,自引:0,他引:1  
The behavior of nitrous oxide (N2O) in fertilized soil was studied in terms of soil fluxes, the production rates at various depths and the turnover in soil. The diffusive losses of N2O to the atmosphere calculated from soil N2O profile compared favorably with the flux directly determined with a closed chamber technique. The estimate of N2O production rates at several depths demonstrated that the sites of N2O production was only near the soil surface. The calculated residence time of N2O in the entire soil column studied was only 1.4 hour during active emission period and less than 1 day even in the later period having trace N2O emission. The prolonged N2O emission observed after the active phase was due likely to a lasting N2O production rather than a supply from the soil N2O reservoir. The results suggested that most N2O in soil was emitted quite promptly to the atmosphere after its production. A minor role of soil as an N2O reservoir is emphasized from the viewpoint of the origin of groundwater N2O. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The selective catalytic reduction (SCR) of NO by propane in the presence of excess oxygen was studied on a Co/ZrO2 catalyst. This system is present as active for the NO reduction to N2. It was found that the addition of Co could improve the activity and selectivity of propane towards NOx reduction. The activity depends strongly on the space velocity (GHSV) when the system works with low oxygen concentration and it is independent of the space velocity when the system operates with excess oxygen. The water vapor present in the feed produces deactivation in the catalyst as well as in the support.  相似文献   

10.
The catalytic conversion of N2O to N2 in the presence or the absence of propene and oxygen was studied. The catalysts examined in this work were synthesized impregnating metals (Rh, Ru, Pd, Co, Cu, Fe, In) on different supports (Al2O3, SiO2, TiO2, ZrO2 and calcined hydrotalcite MgAl2(OH)8·H2O). The experimental results varied both with the type of the active site and with the type of the support. Rh and Ru impregnated on -alumina exhibited the highest activity. The performance of the above most promising catalysts was studied using various hydrocarbons (CH4, C3H6, C3H8) as reducing agents. These experimental results showed that the type of reducing agent does not affect the reaction yield. The temperature where complete conversion of N2O to N2 was measured was independent of the reductant type. The activity of the most active catalysts was also measured in the presence of SO2 and H2O in the feed. A shift of the N2O conversion versus temperature curve to higher temperatures was observed when SO2 and H2O were added, separately or simultaneously, to the feed. The inhibition caused by SO2 was attributed to the formation of sulfates and that caused by water to the competitive chemisorption of H2O and N2O on the same active sites.  相似文献   

11.
Surface nitrite/nitrate redox cycles were proposed to explain light-off behavior that was observed during the decomposition of N2O over Fe-ZSM-5. Further study has demonstrated that while the nitrite/nitrate model can explain the original observations as an isothermal, mechanistic phenomenon, the light-off behavior is thermal, and not a mechanistic effect. Nonetheless, a pathway involving nitrite/nitrate redox cycles appears to be more consistent with experimental observation than the simple two-step pathway involving cation redox cycles. In particular, the nitrite/nitrate pathway can explain the effect of added NO upon the reaction kinetics and the reported isotopic product composition when unlabeled N2O reacts over an oxygen-labeled catalyst. Further, a nitrite/nitrate pathway is consistent with the steady-state kinetics as well as published thermal desorption and infrared spectroscopic results.  相似文献   

12.
ABSTRACT

Double mixed Cu0.5Co0.5Fe2O4 ferrite nanoparticles were found as a highly efficient and magnetically separable nanocatalyst for the synthesis of varied flavanone antioxidants. A wide range of flavanone derivatives were prepared with excellent isolated yields within the short reaction times. The catalyst could be separated using a simple magnetic extraction and reused 6 times with no remarkable loss of activity. The high activity of the prepared catalyst was attributed to the cooperative activation of the carbonyl group by both copper and cobalt via a synergistic catalytic effect that facilitates the Micheal addition of the hydroxyl group to the α,β-unsaturated ketone.  相似文献   

13.
Deuk Ki Lee 《Catalysis Letters》2005,99(3-4):215-219
For a series of oxidized Cu-ZSM-5 catalysts which were characterized in the catalytic amounts of the oxygen-bridged Cu2+-dimers, [Cu2+–O–Cu2+], activation energies required for the reduction of the Cu2+-dimer species by O2 release were determined using the temperature-programmed experiments of thermal O2 desorption (TPD) and N2O decomposition reaction. The activation energy for the thermal reduction of the Cu2+-dimers during the TPD decreased linearly with increasing molar number of the Cu2+-dimers available on the ZSM-5, suggesting that the energy barrier of the O2 formation via a Langmuir-Hinshelwood (LH) mechanism increased in proportion to the distance between the two Cu2+-dimers in the nearest neighbor. Activation energies of thermal O2 release were comparable to the literature-reported binding energies of the differently spaced Cu2+-dimers. It was also revealed that the activation energy of O2 release during the temperature programmed N2O decomposition reaction over an oxidized catalyst was generally low as compared to that in the TPD, and that the degree of reduction of the Cu2+-dimers was much greater in the N2O decomposition reaction than in the TPD at the same temperatures. These beneficial effects N2O decomposition on the reduction of the Cu2+-dimers were discussed in respect of the removal mechanism of the Cu2+-dimer bridged oxygen.  相似文献   

14.
Both the conversion and H2O2 selectivity (or yield) in direct oxidation of H2-to-H2O2 (using 1.7 mol% H2 in O2 as a feed) and also the H2O2 decomposition over zeolite (viz. H-ZSM-5, H-GaAlMFI and H- ) supported palladium catalysts (at 22 °C and atmospheric pressure) are strongly influenced by the zeolite support and its fluorination, the reaction medium (viz. pure water, 0.016 M or 1.0 M NaCl solution or 0.016 M H2SO4, HCl, HNO3, H3PO4 and HClO4), and also by the form of palladium (Pd0 or PdO). The oxidized (PdO-containing) catalysts are active for the H2-to-H2O2 conversion and show very poor activity for the H2O2 decomposition. However, the reduced (Pd0-containing) catalysts show higher H2 conversion activity but with no selectivity for H2O2, and also show much higher H2O2 decomposition activity. No direct correlation is observed between the H2-to-H2O2 conversion activity (or H2O2 selectivity) and the Pd dispersion or surface acidity of the catalysts. Higher H2O2 yield and lower H2O2 decomposition activity are, however, obtained when the non-acidic reaction medium (water with or without NaCl) is replaced by the acidic one.  相似文献   

15.
The catalytic performances of Fe-zeolites having MFI structures and in which the Fe introduced either by ion exchange or during the hydrothermal synthesis has undergone partial framework to extra-framework migration induced by controlled heat treatment are reported. In particular, the catalytic behavior as function of time-on-stream and the formation of carbonaceous species were studied. The results suggest that only a small fraction of the iron is active in the selective oxidation of benzene to phenol in the presence of N2O. It is suggested that the active fraction is formed by isolated iron ions in a pseudo-octahedral configuration with the sites positioned in hydroxyl nests (defects) of the zeolite and is selective in phenol formation as a result of in situ reduction during the catalytic tests. Two possible pathways of carbonaceous species were identified, the first through the intermediate further hydroxylation of phenol and the second through the coupling of phenol with benzene or another phenol molecule. This second pathway is the dominant mechanism of formation of carbonaceous species, although the relative rate of the two pathways depends on the zeolite characteristics and iron loading. It is also suggested that the second pathway depends on the strong chemisorption of phenol, probably on Lewis acid sites, which hinders the fast back-desorption of phenol out from the zeolite channels and thus favors the formation of carbonaceous species. Catalysts prepared by hydrothermal treatment show a lower rate of deactivation than those prepared by ion exchange, although the latter show a comparable productivity to phenol for amounts of iron in extra-framework positions around 20 to 30 times lower. The results also indicate that the presence of Al in the zeolite framework is beneficial for reducing the rate of deactivation as compared to that of Fe-silicalite samples.  相似文献   

16.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

17.
The reduction of lean NOx using ethanol in simulated diesel engine exhaust was carried out over Ag/Al2O3 catalysts in the presence of H2O and SO2. The Ag/Al2O3 catalysts are highly active for the reduction of lean NOx by ethanol but the reaction is accompanied by side reactions to form CH3CHO, CO along with small amounts of hydrocarbons (C3H6, C2H4, C2H2 and CH4) and nitrogen compounds such as NH3 and N2O. The presence of H2O enhances the NOx reduction while SO2 suppresses the reduction. The presence of SO2 along with H2O suppresses the formation of acetaldehyde and NH3. By infrared spectroscopy, it was revealed that the reactivity of NCO species formed in the course of the reaction was greatly enhanced in the presence of H2O. The NCO species readily reacts with NO in the presence of O2 and H2O at room temperature, being converted to N2 and CO2 (CO). Addition of SO2 suppresses the formation of NCO species and lowers the reactivity of the NCO species. However, the reduction of NOx is still kept at high conversion levels in the presence of H2O and SO2 over the present catalysts. About 80% of NOx in the simulated diesel engine exhaust was removed at 743 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Chromium oxide supported on alumina and titania supports was modified with oxides of sodium, vanadium and molybdenum. The modified and unmodified chromium oxide catalysts were characterized by several techniques. The presence of surface chromium oxide and surface molybdenum and vanadium oxide species was detected in the unmodified and molybdenum and vanadium oxide modified supported chromium oxide catalysts. The reducibility (Tmax and H/Cr ratio) of the surface chromium species was not affected for the vanadium and molybdenum oxide modified catalysts; however, the reducibility changed noticeably for sodium modified supported chromium oxide catalysts. Studies of the reactivity of the ODH of propane revealed the effect of modifiers on the reactivity properties of the surface chromium oxide species. The activity and propene selectivity decreased for sodium modified supported chromium oxide catalysts. However, the activity increased for vanadium oxide modified catalysts and was similar for molybdenum oxide modified catalysts irrespective of the support. The propene selectivity was higher for molybdenum oxide modified chromium oxide catalysts. However, the propene selectivity for vanadium oxide modified catalysts depends on the support since it appears that the inherent selectivity of the surface vanadium oxide species is reflected.  相似文献   

19.
N2O decomposition on an ion-exchanged Fe-MFI catalyst has been studied using an 18O-tracer technique in order to reveal the reaction mechanism. N2 16O was pulsed onto an 18O2-treated Fe-MFI catalyst at 693 K, and the O2 molecules produced were monitored by means of mass spectrometry. The 18O fraction in the produced oxygen had almost half the value of that on the surface oxygen, and 18O18O was not detected. The result shows that O2 formation proceeds via the Eley–Rideal mechanism (N2 16O + 18O(a) N2 + 16O18O).  相似文献   

20.
Catalytic properties of Cr2O3 supported on MgF2 or Al2O3 have been modified by magnesium oxide. The catalysts have been obtained by the co-impregnation method and characterised by: BET, XRD and TPR. As follows from the results, the oxides supported on magnesium fluorine react with each other already at 400 °C, leading to formation of an amorphous spinel-like phase. On the Al2O3 support such an MgCr2O4 spinel has appeared at much higher temperatures. The addition of magnesium oxide has a significant effect on the activity and selectivity of the catalysts studied in the CO oxidation reaction at room temperature and in the reaction of cyclohexane dehydrogenation. The magnesium–chromium catalysts supported on MgF2 have been found to show much higher activity and selectivity than the analogous systems supported on Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号