首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/silver nanoparticles composite inks have been prepared through in situ synthesis and ultrasonic dispersion. The developed inks were proved to be suitable for various inkjet printing trials to deposit the thin films which were subsequently characterized to assess their electric and optical properties. The results have indicated that the dedoping of PSS from PEDOT during the in situ synthesis can be detrimental to the conductivity of the deposited composite films. However, the addition of silver nanoparticles to pristine PEDOT:PSS has significantly enhanced the conductivity of the thin films, with an inevitable loss in transparency. The various factors that can influence the properties of the thin films have also been analyzed and discussed. This study provides an insight into the effect of silver nanoparticles on PEDOT:PSS thin films deposited using inkjet printing process, and their properties due to the methods of ink formulation.  相似文献   

2.
We report on the investigation of the suitability of printed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films for temperature sensing devices. Gravure printing with the advantage of low cost production was used to prepare thin films of PEDOT:PSS on a flexible foil substrate. The electrical resistance was studied during thermal cycling and exposure to elevated constant temperatures. A drift of the resistance which depends on time, temperature and sample makes the usage as simple temperature sensors not possible. However, a closer look on the drift of relative resistances reveals that integrated temperature-time-profiles can be measured, which might be interesting in connection with monitoring of conditions of storing and transport of sensitive goods.  相似文献   

3.
A modified Hummers method was used to synthesize graphene oxide (GO) with different degrees of oxidation. Single-factor and orthogonal experiments were designed to analyze the influence of the oxidant dose on the properties of the GO. The GO series were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis, and zeta potential measurements. We synthesized RGO/PEDOT:PSS composites by an in situ polymerization with the GO. Through analysis of the specific conductance of the composites, we determined the optimum conditions for forming RGO/PEDOT:PSS which can improve the specific conductance to 114.06 S/cm. Thus, by changing the oxidation degree of GO we were able to improve the conductivity of RGO/PEDOT:PSS composites.  相似文献   

4.
We deal with correlation between sizes of colloidal particles and minimum thickness of spin-coated thin films of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) studied by a dynamic light scattering (DLS), a scanning transmission electron microscopy coupled with an energy dispersive X-ray spectroscopy (STEM-EDX), C60-sputtering X-ray photoelectron spectroscopy (XPS), and an atomic force microscopy. Based on the various measurements, it was pointed out that, PEDOT/PSS colloidal dispersion contained majority of primary nanoparticles with mean diameter of 41 nm and 16 nm for BAYTRON P AG (denote P grade) or BAYTRON PH500 (denote PH grade) solutions, respectively, and small amount of clusters aggregated by the primary particles, based on the DLS measurement and STEM observation. On the other hand, PEDOT/PSS thin films with thickness of 44 nm and 16 nm were easily prepared by spin-coating on silicon wafers from the P and PH grade solutions, respectively. Results of STEM-EDX, DLS, and XPS measurements suggested that the PEDOT/PSS thin films consist of the randomly packed primary nanoparticle-“monolayer”.  相似文献   

5.
Yajie Yang  Jianhua Xu 《Thin solid films》2008,516(6):1191-1196
The self-assembly of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) nanoparticles at an air/water interface was achieved by means of the electrostatic force between an octadecylamine (ODA) monolayer and PEDOT-PSS nanoparticles. A surface pressure (π)-area (A) isotherm and X-ray photoelectron spectroscopy of the composite film were used to confirm the electrostatic force between the SO3 group of PSS and the NH4+ group of aliphatic amines. Monolayer and multilayer composite films of ODA/PEDOT-PSS and ODA-stearic acid (SA)/PEDOT-PSS were fabricated. These solid Langmuir-Blodgett films were investigated by the UV-Vis spectrum, atomic force microscopy, and X-ray diffraction method. It is observed that ODA-SA/PEDOT-PSS films had a higher film-forming capability than ODA/PEDOT-PSS films and an ordered multilayer structure was developed. The conductive properties of ODA-SA/PEDOT-PSS LB films were investigated in detail. Factors influencing the film conductivity such as the layer number and surface pressure were discussed and the conductive mechanism was also studied.  相似文献   

6.
We present highly efficient indium tin oxide free polymer solar cells based on poly-(3-hexylthiophene-2,5-diyl) and C61-bis-butric-acid-methyl-ester (P3HT:bisPCBM) comprising a polymeric anode from highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) formulations. The film conductivity was optimized by various additives. We found conductivities of almost 600 S/cm upon the addition of dimethylsulfoxide. The wetting properties of different PEDOT:PSS formulations were investigated by contact angle measurements. The optimized high conductivity in combination with the good film forming properties allow for the fabrication of highly efficient organic solar cells with an external power conversion efficiency of 3.5% with PEDOT:PSS as polymeric anode.  相似文献   

7.
In this work we present indium tin oxide free polymer photovoltaic devices featuring a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) anode that has been patterned by oxygen plasma etching. By optimizing the PEDOT:PSS formulation and thickness, we achieved conductivities up to 400 S/cm. The best overall power conversion efficiency was found to be 2.2% under equivalent illumination to one sun with a PEDOT:PSS film conductivity of 300 S/cm.  相似文献   

8.
Transparent conducting polymer, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) thin films were fabricated by a vapor-deposition technique, ultrasonic spray-assisted mist deposition method. The thickness was well controlled from 40 to 600 nm, keeping reasonable conductivity of 300-450 S/cm. The films with thickness less than 180 nm have high (> 80%) transmission over a wide (270-800 nm) spectral region. In addition, formation of ring-dot electrode pattern with a hard-mask was demonstrated, achieving lithography-less patterning. The results encourage that this deposition method is developed as an actual process technology of transparent electrodes in devices.  相似文献   

9.
In this study, p-type semiconducting polymer of acid, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), has been employed as a hole-transporting electrode to fabricate organic polymer heterojunction photovoltaic cells. The results showed that the resultant poly(3-hexylthiophene): C60 derivatives [6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)/PEDOT:PSS can significantly expand the light absorption range which was expected to enhance the sunlight excitation. The influences of annealing conditions and barrier layer on the photoelectric performances were investigated in detail, giving an optimized synthesis conditions: annealed temperature was at 120 °C for 90 min, the thickness of PEDOT:PSS film was approximately 3–4 μm, and the ratio of PCBM and P3HT was 1:2. The blended heterojunction consisting of PCBM and P3HT was used as charge carrier-transferring medium to replace I3 ?/I? redox electrolyte, showing a short-circuit current of 4.30 mA cm?2, an open-circuit voltage of 0.83 V, and a light-to-electric energy conversion efficiency of 2.37 % under a simulated solar light irradiation of 100 mW cm?2. In addition, a solid-state polymer heterojunction photovoltaic cells with a short-circuit current of 3.59 mA cm?2, an open-circuit voltage of 0.80 V, and a light-to-electric energy conversion efficiency of 1.9 % was successfully fabricated by simplifying the process.  相似文献   

10.
Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq−1 and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes.  相似文献   

11.
12.
导电聚(3,4-二氧乙基噻吩)应用研究进展   总被引:1,自引:0,他引:1  
聚(3,4-二氧乙基噻吩)(PEDOT)是目前发现的导电态最稳定的导电高分子之一,在抗静电、塑料内存、电解电容器、有机太阳能电池、有机电致发光显示器件等领域得到了广泛研究和应用.本文简要综述PEDOT在这些领域的应用进展情况.  相似文献   

13.
Carbon nanotube-based nanocomposites of chitosan were successfully prepared by a simple solution-evaporation method. Multiwalled carbon nanotubes (MWCNTs) were treated by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS) in water before mixed with a chitosan solution to improve the dispersion of MWCNTs and interfacial compatibility between MWCNTs and chitosan. The morphological and mechanical properties of the prepared PEDOT-PSS/MWCNT/chitosan nanocomposites have been characterized with field emission scanning electron microscopy (FESEM) and tensile tests. MWCNTs were observed to be homogeneously dispersed throughout the chitosan matrix. As compared with the neat chitosan, the tensile strength and modulus of the nanocomposite were greatly improved by about 61% and 34%, respectively, with incorporation of only 0.5 wt.% of MWCNTs into the chitosan matrix. The comparison of mechanical properties for PEDOT-PSS/MWCNT/chitosan and pristine MWCNT/chitosan nanocomposites has been made. The hardness of the nanocomposites was also evaluated by nanoindentation.  相似文献   

14.
Self-assembled poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT) layers were prepared on polyelectrolytes multilayers (polyethylenimine and polyacrylic acid) on an indium–tin oxide (ITO) surface using a layer-by-layer technique. The electroluminescence efficiencies of the devices were drastically enhanced by the addition of self-assembled PEDOT layers between the spin-coated PEDOT and ITO. The ITO corrosion by the acidic PEDOT and the migration of the indium components across the interfacial layers were inhibited in the presence of the polyelectrolyte multilayers. Remarkably, the lifetime of the device was 60% longer than the one without the self-assemblies, which was attributed to the improvement in the interfacial contact.  相似文献   

15.
Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 °C, the best commercially available inorganic semiconductors are bismuth telluride (Bi(2)Te(3))-based alloys, which possess a figure of merit ZT close to one. Most of the recently discovered thermoelectric materials with ZT>2 exhibit one common property, namely their low lattice thermal conductivities. Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (λ=0.37 W m(-1) K(-1)) yields a ZT=0.25 at room temperature that approaches the values required for efficient devices.  相似文献   

16.
Carbon black/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (CB/PEDOT:PSS) composite films have been prepared by a spin-coating method. The morphology of the composite films was investigated by field emission scanning electron microscopy and atomic force microscopy. The thermoelectric properties of CB/PEDOT:PSS composite films were measured at room temperature. As the content of CB increased from 0 to 11.16 wt%, the electrical conductivity of the composite films first increased sharply and then decreased, while the Seebeck coefficient increased slowly. A highest power factor of 0.96 μWm?1 K?2 was obtained.  相似文献   

17.
Seok-Joo Wang 《Thin solid films》2010,518(24):7185-7190
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin films incorporating Pt nanoparticles were synthesized by a simple method using H2PtCl6xH2O. The surface morphology, chain structure, bonding states, and electronic structure of the films were investigated. Unusual formation of a PEDOT-rich surface was accompanied with interactions between PEDOT:PSS and Pt nanoparticles due to agglomeration of PEDOT:PSS around Pt nanoparticles and destabilization of chain conformation. High doping of the PEDOT moiety occurred during the reduction of H2PtCl6·xH2O so that an increased work function and a decreased energy gap between the edge of the highest occupied molecular orbital and the Fermi level were observed. Intermediate products including chlorine and [PtCl6], and the ionic nature of the Pt nanoparticles were responsible for the resultant properties of Pt-PEDOT:PSS. Products generated during the formation of Pt nanoparticles served as a third anionic dopant like PSS and as an inhibitor of segregation.  相似文献   

18.
汪斌华  邓永红  戈钧  周啸  王晓工  杨邦朝 《功能材料》2005,36(10):1610-1612
利用3,4-乙撑二氧噻吩单体和对甲苯磺酸铁,分别以异丙醇、四氢呋喃和乙氰为溶剂,用化学氧化法合成了导电聚合物聚(3,4-乙撑二氧噻吩),3种溶剂中的反应速率有较大差异,乙氰中反应速率最快,四氢呋喃中反应速率最慢.三者的聚合产物都具有较高的电导率,但四氢呋喃中合成产物的电导率略高于另外两个产物.红外光谱和拉曼光谱显示,3种溶剂中合成的聚(3,4-乙撑二氧噻吩)在化学结构、分子共轭长度、掺杂情况等方面基本相同.  相似文献   

19.
实验以十二烷基苯磺酸钠(SDBS)为乳化剂,Na2S2O8为氧化剂,正己烷为油相水性乳化液中制备出聚3,4-已撑二氧噻吩(PEDOT)纳米棒和纳米球。研究了乳化剂浓度、温度、油水比、氧化剂浓度对PEDOT形貌的影响。当油水比例为1/4,乳化剂的量为1.00g,氧化剂的量为0.1626g,温度为60℃时,得到PEDOT为分布均匀规则的纳米棒,相同条件下,油水比例为1/8时,PEDOT为纳米球。油水比例为1/4,乳化剂用量为1.0g~2.0g,随乳化剂用量增加,PEDOT的形状由棒状变为球状,并且随着乳化剂用量增加,球状尺寸减小。  相似文献   

20.
We report for the first time highly conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites fabricated by in situ polymerization and their applications in a thermoelectric device and a platinum (Pt)-free dye-sensitized solar cell (DSSC) as energy harvesting systems. Graphene was dispersed in a solution of poly(4-styrenesulfonate) (PSS) and polymerization was directly carried out by addition of 3,4-ethylenedioxythiophene (EDOT) monomer to the dispersion. The content of the graphene was varied and optimized to give the highest electrical conductivity. The composite solution was ready to use without any reduction process because reduced graphene oxide was used. The fabricated film had a conductivity of 637 S.cm-1, corresponding to an enhancement of 41%, after the introduction of 3 wt.% graphene without any further complicated reduction processes of graphene being required. The highly conductive composite films were employed in an organic thermoelectric device, and the device showed a power factor of 45.7 μW·m^-1K^-2 which is 93% higher than a device based on pristine PEDOT:PSS. In addition, the highly conductive composite films were used in Pt-free DSSCs, showing an energy conversion efficiency of 5.4%, which is 21% higher than that of a DSSC based on PEDOT:PSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号