共查询到19条相似文献,搜索用时 148 毫秒
1.
为了提高网络入侵检测的准确性与检测效率,弥补由单一优化算法带来的计算精度低、易陷入局部极值等不足,将差分算法的思想引入量子粒子群算法中,提出了一种改进量子粒子群算法(Improved Quantum Particle Swarm Optimization algorithm,IQPSO)和改进差分算法(Improved Difference Evolution,IDE)相融合的IQPSO-IDE算法,并将IQPSO-IDE算法对支持向量机(Support Vector Machine,SVM)的参数进行优化。以此为基础,设计了一种基于IQPSO-IDE算法的网络入侵检测方法。实验结果表明,IQPSO-IDE算法与传统的QPSO、GA-DE、QPSO-DE算法相比,不仅在效率上有了明显的改善,而且在网络入侵检测的正确率上分别提高了5.12%、3.05%、2.26%,在误报率上分别降低了3.31%、1.54%、0.93%,在漏报率上分别降低了1.26%、0.73%、0.52%。 相似文献
2.
一种基于改进支持向量机的入侵检测方法研究 总被引:1,自引:0,他引:1
提出基于粒子群优化(Particle Swarm Optimization,PSO)算法和支持向量机(Support Vector Machines,SVM)的入侵检测方法,为优化SVM性能,使用PSO的全局搜索特性寻找SVM的最优参数[C]和[σ];为避免PSO算法陷入局部最优,引入变异操作,找到最优参数组合后进行基于PSO_SVM入侵检测算法的训练和检测,解决了入侵检测系统准确度难题。仿真实验表明该方法的检测率为92.8%,误报率为6.911 9%,漏报率为9.708 7%,对KDDCUP竞赛的最佳结果有一定程度的提高,实验结果验证了该算法的有效性和可行性。 相似文献
3.
PSO-SVM算法在网络入侵检测中的研究 总被引:3,自引:0,他引:3
保证网络运行的安全性,防止外来攻击与破坏,进行准确检测.由于网络入侵具有不确性,针对复杂性和多样性,传统检测方法不能有效对这种特性进行识别,导致目前网络入侵检测准确率低.为了提高网络入侵检测准确率,将粒子群(PSO)算法引入到网络人侵检测中,用优化SVM参数.PSO-SVM将网络入侵检测数据输入到SVM中学习,将SVM参数作为PSO中的粒子,把网络人侵检测准确率作为PSO的目标函数,然后通过粒子之间相互协作得到SVM最优参数,最后对网络入侵数据进行检测并输出网络人侵检测结果.在Matlab平台上采用DRAP网络入侵数据集对PSO-SVM进行仿真.实验结果表明,改进的方法PSO-SVM检测速度快,检测准确率高,为网络安全提供可靠保障. 相似文献
4.
5.
针对传统机器学习方法在处理非平衡的海量入侵数据时少数类检测率低的问题,提出一种融合生成式对抗网络(GAN)、粒子群算法(PSO)和极限学习机(ELM)的入侵检测(GAN-PSO-ELM)方法。对原始网络数据进行预处理,利用GAN并采用整体类扩充的方式对数据集进行少数类样本扩充。在扩充后的平衡数据集上,利用PSO算法优化ELM的输入权重与隐含层偏置,并建立入侵检测模型。在NSL-KDD数据集上进行仿真实验。实验结果表明,与SVM、ELM、PSO-ELM方法相比,GAN-PSO-ELM不仅具有较高的检测效率,而且在整体检测准确率上平均提高了3.74%,在少数类R2L和U2R上分别平均提高了28.13%和16.84%。 相似文献
6.
本文提出一种将粒子群优化算法(PSO)和灰色支持向量机(GSVM)结合起来的入侵检测方法。利用灰色关联分析理论处理原始数据,消除冗余属性,减少训练样本,克服支持向量机收敛速度慢的缺点。对处理后的数据集使用SVM建立分类模型,但在求解最优分类超平面时使用粒子群优化算法,以提高检测速度和检测效率。最后,利用KDDcup1999数据集进行仿真实验,结果表明该模型能有效提高分类质量。 相似文献
7.
构造了一种基于并行支持向量机(Parallel Support Vector Machines,简称PSVMs)的网络入侵检测(Intrusion Detection,ID)方法,多个并行的支持向量机在分布式的计算机系统环境上运行。利用反馈对初始的分类器进行更新,避免了初始训练样本的分布差异过大而对分类器性能产生的潜在影响。将其与神经网络检测模型进行对比,实验证明,该方法在保持较低误警率的同时有着很好的检测率,在训练时间上优于传统BP网络方法,并且能保证较好的泛化能力。 相似文献
8.
9.
针对传统遗传算法在网络入侵检测中存在分类复杂的问题,提出结合条件熵遗传算法(CEGA)和支持向量机(SVM)的网络入侵检测算法。将入侵特征的抽取和分类模型的建立进行联合优化,同时利用训练数据的统计特性指导入侵特征的抽取,并对特征空间进行线性变换,得到优化的特征子集和分类模型,在提高分类检测率的同时降低检测时延。 相似文献
10.
朱丽叶 《数字社区&智能家居》2009,(17)
由于误警率较低等原因,传统的入侵检测系统通常采用基于规则的滥用检测模型,但是这种模型无法检测新型的攻击行为,甚至对已有攻击的变种也无能为力。而基于模式识别的异常检测虽可以对新型攻击做出反应,但效率不高。该文提出了一种基于SVM的新型混合入侵检测模型,综合了滥用检测和异常检测的优点。将该模型应用于KDDCUP99数据源,实验结果表明该模型在对已存在和新型攻击行为的检测中,都有很好的表现。 相似文献
11.
12.
13.
14.
15.
入侵检测系统处理的数据具有数据量大、特征维数高等特点,会降低检测算法的处理速度和检测效率。为了提高入侵检测系统的检测速度和准确率,将特征选择应用到入侵检测系统中。首先提出一种基于免疫记忆和遗传算法的高效特征子集生成策略,然后研究基于支持向量机的特征子集评估方法。并针对可能出现的数据集不平衡造成的特征子集评估能力下降,以黎曼几何为依据,利用保角变换对核函数进行修改,以提高支持向量机的分类泛化能力。实验仿真表明,提出的特征选择算法不仅可以提高特征选择的效果,而且在不平衡数据集上具有更好的特征选择能力。还表明,基于该方法构建的入侵检测系统与没有运用特征选择的入侵检测系统相比具有更好的性能。 相似文献
16.
17.
基于模糊支持向量机的网络入侵检测研究 总被引:3,自引:0,他引:3
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。 相似文献
18.
19.
针对基于系统调用的异常入侵检测方法中较难抽取正常系统调用序列的特征库问题,提出将正常系统调用序列抽取出的子序列的频率特征转换为频率特征向量,并以此作为系统调用序列的局部和全局特征;为了保证对大规模数据集检测的准确率和速度,采用一类分类支持向量机(SVM)分类器进行学习建模,利用先前建立的特征库进行训练,建立入侵检测分类模型,最后对于待检测序列进行异常检测。在多个真实数据集上与已有的异常入侵检测方法进行比较实验,结果表明本文提出的方法的多个异常检测指标都都优于已有方法。 相似文献