首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Drying Technology》2013,31(8):1711-1724
The conditioning phase of the conventional timber drying process has been investigated. Due to wood shrinkage, tensile stress will develop in the surface layer of the board during drying. This stress combined with the change in MC causes mechano-sorptive creep. If the process is abruptly terminated when the target MC is reached, then there will be a considerable internal MC gradient and the creep deformation will cause distortions in subsequent machining. A conditioning phase is often introduced at the end, in order to reduce these problems. The conditioning phase has been analyzed with a wood drying simulation model. It is shown that traditional conditioning cannot completely reverse the deformations, even at very long conditioning times. An optimizing procedure has thus been used to create a new conditioning “schedule” which gives the best possible result within a given time. Features of such optimized schedules are presented. As the surface layer is elongated during drying, there is a risk that considerable stress develops as the moisture profile levels out. In some cases internal checking will be the result. The optimization procedure is thus modified to avoid such situations and the impact on the conditioning schedule is discussed.  相似文献   

2.
A significant amount of time and energy is required to dry green timber with a large cross-section. Due to long-lasting internal moisture gradients, internal stress is high during the drying of large cross-sectional timber, and the potential for check occurrence is significant. Although many researchers have aimed to develop a method for drying large pieces of wood without the occurrence of drying defects, a procedure for rapidly drying wood without cracks has not yet been developed. In the present study, an outer surface sealing method and center-boring process (i.e., drilling a hole along the central longitudinal axis) was developed to dry timber with a large cross-section without the occurrence of checks. The proposed center-boring procedure reduces the movement of heat and moisture inside the wood and expedites the drying process by sustaining a small MC gradient. Moreover, the outer surface sealing treatment changes the drying stress direction and controls check occurrence. By kiln drying center-bored (80-mm diameter) and outer-surface-sealed round timber pitch pine (Pinus rigida) with an initial MC of 30% and an outer diameter of 140 mm, a final MC of 6% was obtained within 40 hours without the occurrence of any drying defects.  相似文献   

3.
In this study, an internal drying stress sensor was developed based on a silicon micromachined pressure gauge inserted in a cylindrical Teflon shell. Teflon provides protection and works as a medium between the gauge and wood. In this configuration, the pressure gauge has unidirectional, axis-selective sensitivity. When inserted in a drill hole at a given depth in the wood, the sensor can directly measure the compressive stress produced by shrinkage in the diameter of the hole. Based on research in the last 5 years, a preindustrial version has been developed that has been tested in laboratory drying experiments. Results show that the trend of the stress during the drying process can be visualized, and critical points can be determined such as stress reversal time and the effect of the conditioning phase on the internal stress. The sensors thus have potential to be used in the drying control on industrial scale once the remaining problems are solved.  相似文献   

4.
S. Pang 《Drying Technology》2000,18(8):1677-1696
A one-dimensional stress model was proposed for drying of radiata pine lumber, which has considered wood moisture shrinkage, instantaneous stress-strain relationships, mechano-sorptive creep, time-induced creep and temperature effects. In addition, wood hardening behaviour in the plastic region and differences between stress increase and decrease have been taken into account. The proposed Stress model can predict stress development and relief in a drying cycle once the required wood mechanical and Theological properties have been quantified.

Drying experiments were performed to dry Pinus radiata sap wood boards of 100×40×590 mm in a tunnel dryer. In the experiment, wood temperature, moisture content gradient and residual stress through board thickness were measured. The drying cycle included HT drying, cooling and final steam conditioning. The measured stress patterns were in agreement with the model predictions. However, more accurate calculations will be made once the detailed experimental data for radiata pine wood mechanical and rheological properties are available.  相似文献   

5.
S. Pang 《Drying Technology》2013,31(8):1677-1696
ABSTRACT

A one-dimensional stress model was proposed for drying of radiata pine lumber, which has considered wood moisture shrinkage, instantaneous stress-strain relationships, mechano-sorptive creep, time-induced creep and temperature effects. In addition, wood hardening behaviour in the plastic region and differences between stress increase and decrease have been taken into account. The proposed Stress model can predict stress development and relief in a drying cycle once the required wood mechanical and Theological properties have been quantified.

Drying experiments were performed to dry Pinus radiata sap wood boards of 100×40×590 mm in a tunnel dryer. In the experiment, wood temperature, moisture content gradient and residual stress through board thickness were measured. The drying cycle included HT drying, cooling and final steam conditioning. The measured stress patterns were in agreement with the model predictions. However, more accurate calculations will be made once the detailed experimental data for radiata pine wood mechanical and rheological properties are available.  相似文献   

6.
A drying stress model was established by considering that the total shrinkage of wood is the sum of free shrinkage, instantaneous strain, viscoelastic strain, and mechanosorptive strain. From the stress model, the stress can be calculated once the actual wood shrinkage and moisture content gradient are known. Based on this theory, on-line measurement of the drying stress has been realized by measuring the moisture content (MC) gradient between the surface and the core layers, and the actual shrinkage of the board for Pinus massoniana.

A sensor for measuring wood shrinkage was developed based on electric resistance and strain relationship in a selected element material within the sensor. A resistance type of MC sensor was used for the MC gradient measurement. These sensors are reliable and can meet the requirement of the measurements in practical drying. The technique reported in this article for detecting drying stress from the on-line measurements of board shrinkage and MC gradient can be applied to develop optimized drying schedule in commercial drying.  相似文献   

7.
A drying stress model was established by considering that the total shrinkage of wood is the sum of free shrinkage, instantaneous strain, viscoelastic strain, and mechanosorptive strain. From the stress model, the stress can be calculated once the actual wood shrinkage and moisture content gradient are known. Based on this theory, on-line measurement of the drying stress has been realized by measuring the moisture content (MC) gradient between the surface and the core layers, and the actual shrinkage of the board for Pinus massoniana.

A sensor for measuring wood shrinkage was developed based on electric resistance and strain relationship in a selected element material within the sensor. A resistance type of MC sensor was used for the MC gradient measurement. These sensors are reliable and can meet the requirement of the measurements in practical drying. The technique reported in this article for detecting drying stress from the on-line measurements of board shrinkage and MC gradient can be applied to develop optimized drying schedule in commercial drying.  相似文献   

8.
Abstract

The knowledge of moisture content (MC) and drying stress are crucial parameters to control the drying process and maintain the quality of dried wood. Herein, we investigated the pattern of moisture transfer and stress development in Chinese fir during the high-temperature drying process. The MC in each layer of lumber was separated into bound water and free water via nuclear magnetic resonance (NMR), and the drying and residual stress were measured using prong test method. There was different MC in each layer along the thickness, resulting in an MC gradient that initially increased and then decreased, which is consistent with the trend of drying stress. The T21 peak indicating bound water shifted to the left especially when MC was below the fiber saturation point, signifying that the discharge of moisture became difficult with prolonged drying time. The ratio of bound water to free water was different in each layer, indicating that the moisture transfer was different along the thickness. Furthermore, the residual stress was greater than the corresponding drying stress though the disparity reduced gradually, which suggests that the MC gradient was the largest affecting factor for drying stress at high MC stages but decreased to some extent as the drying process continued.  相似文献   

9.
《Drying Technology》2007,25(3):421-431
Mathematical modeling of wood drying is a powerful tool to better understand and quantify the effects of wood properties as well as the effects of drying and post-drying treatment conditions on drying and thus the wood drying models can be used to improve drying quality. The models that have been developed can be divided into three categories: models for drying a single board, models for drying a kiln-wide stack, and models for drying stress and deformation. The single-board drying model employs comprehensive heat and moisture mass transfer equations and can be used to investigate the influence of wood variability. The kiln-wide drying model, which is based on the transfer processes between wood and the drying medium, is able to examine the influence of drying schedules and wood properties. The stress model can predict stress development in drying and stress relief in final steam conditioning and post-kiln treatment. An integrated model can be used to optimize drying schedules and develop strategies for high-quality dried timber.  相似文献   

10.
Thermal drying of materials with internal pores is always a time‐consuming and energy‐intensive step within a production process. For chemical and pharmaceutical mass products and, in particular, for wood as an important raw material it is desirable to reduce the water content before thermal treatment by mechanical operations. The wood‐processing industry, facing a rising stress of competition, is forced more than ever to offer high‐quality products at lowest prices. Today, drying of timber is mostly done by air drying or by technical drying in kiln dryers. In any case, drying is necessary to prevent deterioration in quality by shrinkage, formation of cracks, discoloration or infestation. A new process of dewatering wood by combining mechanical and thermal means has been developed at the University of Karlsruhe. Compared to conventional drying processes, short drying times and a low residual moisture content can be achieved and, thus, energy consumption and costs can be reduced. In industrial wood drying only thermal processes (e.g., convective kiln drying, vacuum drying, etc.) have been established because so far no method has been known for removing liquid by mechanical force without significant change in wood structure. With the new I/D process chances for alternatives to conventional thermal drying or for mechanothermal applications are offered.  相似文献   

11.
Due to the limited penetration of infrared, it is very difficult to develop an infrared drying model of rice kernels. In this study, two kinds of simplified drying models, which assumed the penetration depth is infinity and zero, were developed to investigate the effects of penetration on drying characteristics of thin layer infrared drying. The results show each model can predict temperature and moisture contents (MC) accurately. The maximum temperature difference of rice kernels in both models was always less than 1.5°C, so it is reasonable to exclude the influence of thermal stresses due to nonuniform temperature. This study also developed the internal stresses model with the mechanical properties from literatures. Mechanical properties were with the changes of temperature and MC. These models were solved with COMSOL Multiphysics and there are two stress concentration areas. One is near the surface of the endosperm, another close to the center. Comparison between the von Mises stress distribution and the moisture gradient was made after the simulation. The maximum MC in the endosperm appeared at its surface, which reached 190 1/m at 110?s, and the maximum stress appeared at the same place, which, a little later, reached 7?MPa at 160?s. Moisture gradient at the center was zero due to the existence of symmetry, while there was a significant stress, which reached 3.2?MPa during drying.  相似文献   

12.
13.
Intermittent drying techniques for drying timber may provide various benefits by improving timber quality and addressing energy efficiency through saving in energy consumption. The purpose of this study was to compare two intermittent drying schedules applied in the treatment of Eucalyptus delegatensis boards, through assessing surface and internal check development, moisture content (MC) profiles during drying, and timber distortions at the end of drying. The study used identical conditions during the heating phase at 45°C/60% relative humidity (RH), except for RH during the nonheating phase (80 and 90%). The results, discussed in this paper, analyzed the timber quality during and at the end of drying. The different RH during the nonheating phase did not generate a significant difference in MC at the case boards between the two drying schedules. The assessed quality of timber at the end of drying was based on AS/NZS 4787:2001. MC gradient, drying stress residual, internal checking and collapse were graded as class “A” (class A is the highest grade and D is the lowest). Bow, cupping, and spring were under the permissible levels based on grading standard AS 2082–2007. Measured data were validated using Drytek® simulation software showing MC movement in case boards.  相似文献   

14.
In vacuum-press drying of softwood species, wood lemperaiure exhibited a low temperature gradient, and plateau temperature of core lasied during all stages of drying. The drying curves were close to “linear”. The drying rates of the short lumbers were higher for red pine and western hemlock, lower for white pine and similar for larch lumber compared to the long ones. Transverse and longitudinal moisture gradients were small for western hemlock and red pine, and great for larch and white pine lumber. Energy consumption curves were split into three sections: increasing moderately, fairly constant and increasing rapidly. Casehardening stress of dried lumber occurred very slightly. Dried lumbers exhibited strong tendency for fine end checking, slight surface checking and no internal checking. Shrinkage appeared to be low.  相似文献   

15.
In some species, such as subalpine fir (Abies lasiocarpa [Hook] Nutt), the water content of the confined zones in heartwood is as high as or greater than that of sapwood. Such wet zones of heartwood are referred to as “wetpocket” or “wetwood.” Wood products from subalpine fir forests are adversely affected by the wetwood-associated problems, particularly during the drying process. The objectives of the study were as follows: (1) to investigate feasibility of a high X-ray energy industrial computed tomography (ICT) scanner for imaging wetwood; and (2) to determine changes of the 2-D and 3-D moisture profiles (from core to shell) at different drying times.

Although medical CT scanning has been used for attaining signal intensity profiles of typical wood at different drying times, the technology has not, to date, been used for the study of wetwood phenomenon. This study presents, for the first time, results from the ICT imaging of the wetwood phenomenon. The results indicate that the ICT imaging system provides a powerful technique for imaging wetwood at different drying times. In addition, the results show that during the initial phase of drying, almost flat moisture profiles were observed in all wood types except for the wetwood, which showed a relatively higher moisture profile. A much slower (sluggish) drying development pattern at each increment from core to shell was found within the wetwood zone than normal wood regions along the width, thickness, and length of the board.  相似文献   

16.
Usually the total time-dependent deformation of a loaded drying concrete specimen is subdivided into two components, these two being creep and shrinkage. But it turns out that the sum of both, pure creep and pure shrinkage, is always less than the deformation under load and simultaneous drying. Until now the question remains whether there does exist a special mechanism of drying creep or load induced shrinkage. Creep under sealed conditions can be analytically expressed by means of rate theory. It is shown here that tensile stresses in the drying outer shell usually overcome tensile strength of concrete. Thus crack formation takes place and the internal stress is redistributed. Theoretical predictions are compared with experimental results. It may be concluded that creep and shrinkage of a loaded drying specimen cannot be separated. The total deformation is a consequence of the superposition of internal and external state of stress.  相似文献   

17.
The impact of microwave drying on the quality of dried wood remains unclear. Particular attention should be paid in order to optimize the combined microwave and convective drying process. In this study, a comprehensive internal heat and mass transfer model was developed and numerically implemented in order to simulate and understand the physical phenomena occurring inside Jack pine wood during a combined microwave and convective drying process. The model was validated on the basis of the average moisture content curves for drying scenarios at various microwave power levels. According to the simulations results, an increase in microwave power significantly decreases the drying time of Jack pine wood and increases its internal gas pressure, which increases the risk of cracking. However, compared to purely conventional convective drying, combined microwave and convective drying at medium microwave power and air temperature significantly reduces the drying time and maintains the internal gas pressure at reasonable values. At these conditions, the risk of cracking will be diminished. This last result was checked via experimental measurements of the sample strength dried at different microwave power levels. From this study, we can consider that for Jack pine wood, combined microwave and convective drying is a more efficient technology compared to classical convective drying.  相似文献   

18.
Qinglin Wu 《Drying Technology》2013,31(8-9):2239-2240
ABSTRACT

Large inelastic strain occurs inside a piece of lumber during drying. The strain consists of several components such as elastic, plastic, creep, shrinkage and mechano-sorptive effect. The drying behavior of the whole board is determined by the behavior of the individual components and their interactions. Whereas limited investigations have been made on those strains under moderate conditions, there is a lack of comprehensive research aimed to examine the behavior at elevated temperatures and to incorporate the various strain components into a process model. This research provides experimental data for various strain components of small wood samples and an analytical tool for evaluating the drying behavior of full-size boards.

Small test specimens of Douglas-fir were loaded tangentially in both tension and compression under constant and varying moisture conditions at different temperatures. Experiments were conducted using a small testing machine contained within a pressure vessel. The strain fields for loaded and unloaded test samples were measured using a high resolution video camera. The required moisture change at controlled temperatures was achieved by controlling the total pressure in absence of air with saturated steam. Moisture content was monitored by a quartz spring sorption balance.

The total deformation due to loading and moisture change was decomposed into instantaneous, creep, shrinkage and mechano-sorptive components. Constitutive equations for each component were developed as a function of stress, temperature, moisture, time and moisture change. These equations were incorporated into a process model to simulate the development of stress and strain in large pieces of lumber during drying.

A slicing method was used to measure the distribution of moisture and strain through the thickness of full-size boards at different stages of drying. The process model was used to predict drying stress and strain based on the measured moisture distribution and material properties. The effect of drying conditions and types of wood on the development of drying stress was demonstrated. The predicted drying strains under different drying conditions were compared with the corresponding measurements.  相似文献   

19.
Veikko M  tt  nen 《Drying Technology》2006,24(11):1405-1413
Conventional and vacuum drying experiments were conducted on Betula pendula timber, which was sawn from trees felled during three different seasons. The influence of the wood procurement season on drying behavior differed, on the one hand, between the drying phases above and below 30% moisture content in the conventional drying, and, on the other hand, between the conventional and vacuum drying methods. During the first steps of the conventional drying process, relative humidity in the kiln, as well as drying time and drying rate, varied according to the felling season. Variations in environmental conditions outside the kiln and the seasonal variation in the physical properties of the wood were presumed to be the reasons for differences in drying behavior. The difference in moisture content gradient, i.e., the difference in final moisture content between the inner wood and the surface layer of boards, was greater in conventionally dried timber than in vacuum-dried timber. In conventionally dried timber there was a clear seasonal variation in the gradient of final moisture content, which was greatest for winter-felled wood. The premature drying of the surface layer during the first steps of the conventional drying process of winter-felled wood was the reason for the higher gradient of moisture content. Storage of wood as logs decreased the standard deviation of the final moisture content.  相似文献   

20.
Rheological Behavior of Larch Timber during Conventional Drying   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号