首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the numerical predictions on the turbulent fluid flow and heat transfer characteristics for rectangular channel with porous baffles which are arranged on the bottom and top channel walls in a periodically staggered way. The turbulent governing equations are solved by a control volume-based finite difference method with power-law scheme and the k-ε turbulence model associated with wall function to describe the turbulent structure. The velocity and pressure terms of momentum equations are solved by SIMPLE (semi-implicit method for pressure-linked equation) method.The parameters studied include the entrance Reynolds number Re (1×104-5×104), the baffle height (h=10, 20 and 30 mm) and kind of baffles (solid and porous); whereas the baffle spacing S/H are fixed at 1.0 and the working medium is air. The numerical calculations of the flow field indicate that the flow patterns around the porous- and solid-type baffles are entirely different due to different transport phenomena and it significantly influences the local heat transfer coefficient distributions. Relative to the solid-type baffle channel, the porous-type baffle channel has a lower friction factor due to less channel blockage.Concerning the heat transfer effect, both the solid-type and porous-type baffles walls enhanced the heat transfer relative to the smooth channel. It is further found that at the higher baffle height, the level of heat transfer augmentation is nearly the same for the porous-type baffle, the only difference being the Reynolds number dependence. As expected, the centerline-averaged Nusselt number ratio increases with increasing the baffle height because of the flow acceleration.  相似文献   

2.
A numerical investigation of laminar periodic flow and heat transfer in a three-dimensional isothermal-wall square channel fitted with 45° inclined baffles on one channel wall is carried out in the present work. The finite volume method is introduced and the SIMPLE algorithm has been implemented for all computations. The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 1200. The 45° baffle mounted only on the lower channel wall has a height of b and an axial pitch length (L) equal to channel height (H). Effects of flow blockage ratios, BR = b/H = 0.1–0.5, on heat transfer and pressure loss in the square channel are examined and also compared with the typical case of the transverse baffle (or 90° baffle). It is found that apart from the rise of Reynolds number, the increase in the blockage ratio with the attack angle (α) of 45° results in considerable increases in the Nusselt number and friction factor values. The use of the 45° baffle can help to generate a streamwise main vortex flow throughout the channel leading to fast and chaotic mixing of flow between the core and the wall regions. In addition, the computational results reveal that the significant increase in heat transfer rate is due to impingement jets induced by a longitudinal vortex pair (P-vortex) of flow, appearing on the upper, lower and baffle trailing end side walls. The appearance of vortex-induced impingement flows created by the baffles leads to the maximum thermal enhancement factor of about 2.2 at BR = 0.4 and Re = 1200. The enhancement factor of the 45° baffle investigated is found to be higher than that of the 90° baffle for all Reynolds numbers and baffle heights.  相似文献   

3.
An experimental study has been conducted on the heat transfer of oscillating flow through a channel filled with aluminum foam subjected to a constant wall heat flux. The surface temperature distribution on the wall, velocity of flow through porous channel and pressure drop across the test section were measured. The characteristics of pressure drop, the effects of the dimensionless amplitude of displacement and dimensionless frequency of oscillating flow on heat transfer in porous channel were analyzed. The results revealed that the heat transfer in oscillating flow is significantly enhanced by employing porous media in a plate channel. The cycle-averaged local Nusselt number increases with both the kinetic Reynolds number Reω and the dimensionless amplitude of flow displacement A0. The length-averaged Nusselt number is effectively increased by increasing the kinetic Reynolds number from 178 to 874 for A0 = 3.1-4.1. Based on the experimental data, a correlation equation of the length-averaged Nusselt number with the dimensionless parameters of Reω and A0 is obtained for a porous channel with L/Dh = 3.  相似文献   

4.
In this study heat transfer and fluid flow of Al2O3/water nanofluid in two dimensional parallel plate microchannel without and with micromixers have been investigated for nanoparticle volume fractions of ϕ = 0, ϕ = 4%  and base fluid Reynolds numbers of Ref = 5, 20, 50. One baffle on the bottom wall and another on the top wall work as a micromixer and heat transfer enhancement device. A single-phase finite difference FORTRAN code using Projection method has been written to solve governing equations with constant wall temperature boundary condition. The effect of various parameters such as nanoparticle volume fraction, base fluid Reynolds number, baffle distance, height and order of arrangement have been studied. Results showed that the presence of baffles and also increasing the Re number and nanoparticle volume fraction increase the local and averaged heat transfer and friction coefficients. Also, the effect of nanoparticle volume fraction on heat transfer coefficient is more than the friction coefficient in most of the cases. It was found that the main mechanism of enhancing heat transfer or mixing is the recirculation zones that are created behind the baffles. The size of these zones increases with Reynolds number and baffle height. The fluid pushing toward the wall by the opposed wall baffle and reattaching of separated flow are the locations of local maximum heat transfer and friction coefficients.  相似文献   

5.
The article presents a numerical investigation on laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square-channel fitted with inline 45° V-shaped baffles on two opposite walls. The computations based on the finite volume method with the SIMPLE algorithm have been conducted for the airflow in terms of Reynolds numbers ranging from 200 to 2000. The inline V-baffles with its V-tip pointing downstream and the attack angle (or half V-apex angle) of 45° relative to the flow direction are mounted repeatedly on the lower and upper walls. The baffled channel flow shows a fully developed periodic flow and heat transfer profile for BR = 0.2 at x/D≈ 8 downstream of the inlet. Influences of different baffle height ratios (BR) and pitch ratios, (PR) on thermal behaviors for a fully developed periodic condition are investigated. It is apparent that the longitudinal counter-rotating vortex flows created by the V-baffle can induce impingement/attachment flows over the walls resulting in greater increase in heat transfer over the test channel. Apart from speeding up the fully developed periodic flow pattern, the rise of the BR leads to the increase in Nu/Nu0 and f/f0 values while that of the PR provides an opposite trend. The V-baffle performs better than the angled baffle at a similar condition. The V-baffle with BR = 0.2 and PR = 1.5 yields the maximum thermal performance of about 3.8 whereas the Nu/Nu0 is some 14 times above the smooth channel at higher Re.  相似文献   

6.
The influence of baffle turbulators on heat transfer augmentation in a rectangular channel has been investigated experimentally and numerically. In the experiment, the baffles are placed in a zigzag shape (Z-shaped baffle) aligned in series on the isothermal-fluxed top wall, similar to the absorber plate of a solar air heater channel. The aim at using the Z-baffles is to create co-rotating vortex flows having a significant influence on the flow turbulence intensity leading to higher heat transfer enhancement in the tested channel. Effects of the Z-baffle height and pitch spacing length are examined to find the optimum thermal performance for the Reynolds number from 4400 to 20,400. The Z-baffles inclined to 45° relative to the main flow direction are characterized at three baffle- to channel-height ratios (e/H = 0.1, 0.2 and 0.3) and baffle pitch ratios (P/H = 1.5, 2 and 3). The experimental results show a significant effect of the presence of the Z-baffle on the heat transfer rate and friction loss over the smooth channel with no baffle. The Nusselt number, friction factor and thermal performance enhancement factor for the in-phase 45° Z-baffles are found to be considerably higher than those for the out-phase 45° Z-baffle at a similar operating condition. The in-phase 45° Z-baffle with larger e/H provides higher heat transfer and friction loss than the one with smaller e/H while the shorter pitch length yields the higher Nu, f and TEF than the larger one. The numerical work is also conducted to investigate the flow friction and heat transfer behaviors in the channel mounted with the 45° Z-baffles, and the numerical results are found in good agreement with experimental data.  相似文献   

7.
The article presents a numerical investigation on periodic laminar flow and heat transfer behaviors in a three-dimensional isothermal wall square-channel fitted with 30°-angled baffles on two opposite channel walls. The computations based on the finite volume method with the SIMPLE algorithm have been conducted for the fluid flow in terms of Reynolds numbers ranging from 100 to 2000. To generate a pair of streamwise counter-rotating vortex (P-vortex) flows through the tested channel, the angled baffles with the attack angle of 30° are mounted periodically and inline arrangement on the lower and upper channel walls. Effects of different baffle heights and three pitch ratios on heat transfer and flow behaviors in the channel are examined. It appears that P-vortex flows help to induce impinging flows over the baffle leading end side and the inter-baffle cavity walls resulting in drastic increase in heat transfer rate over the test channel. The computational results reveal that the maximum thermal enhancement factors for the baffle with PR = 1, 1.5 and 2 are found to be about 3.6, 3.8 and 4.0 at BR = 0.2, 0.2 and 0.15, respectively.  相似文献   

8.
This experimental study attempts to explore the local heat transfer in rectangular channel with baffles, and analyzes the experimental results of baffles with different heights and pores in the event of five Reynolds numbers and three heating quantities. Apart from increasing the perturbation of flow field, the channel's flow field with baffles, which is similar to a backward-facing step flow field, is very helpful to heat transfer. To obtain an optimized baffle and increase the perturbation of flow field, this experiment employed baffles with five heights (H = 10–50 mm) and different numbers of pores (N = 1–3), as well as heat flux: Q = 40–100 l/min, Reynolds number: 702–1752, and heating quantity: qin = 90–750 W/m2. In addition to measurement of overall temperature distribution, emphasis is also placed on analysis of local heat transfer coefficient. Furthermore, heat transfer distribution of channel can be applied to explain how the baffles of pores have an influence upon backward-facing step flow field, shear layer, recirculation region, reattachment region and redeveloped boundary layer. Finally, some empirical formulas derived form experimental results may provide a reference for future design.  相似文献   

9.
A numerical investigation has been carried out to examine laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square channel with 45°-angled baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 1000. To generate a pair of mainstreamwise vortex flows through the tested section, baffles with an attack angle of 45° are mounted in tandem and inline arrangement on the lower and upper walls of the channel. Effects of different baffle heights on heat transfer and pressure loss in the channel are studied and the results of the 45° inline baffle are also compared with those of the 90° transverse baffle and the 45° staggered baffle. It is apparent that in each of the main vortex flows, a pair of streamwise twisted vortex (P-vortex) flows created by the 45° baffle exist and help to induce impinging flows on a sidewall and wall of the baffle cavity leading to drastic increase in heat transfer rate over the channel. In addition, the rise in the baffle height results in the increase in the Nusselt number and friction factor values. The computational results reveal that numerical results of both the 45° inline and staggered baffles are nearly the same. The optimum thermal enhancement factor is at the 45° baffle height of 0.2 times of the channel height for both arrays. The maximum thermal enhancement factor of the 45° baffle in the Re range studied is found to be about 2.6 or twice higher than that of the 90° transverse baffle.  相似文献   

10.
Unsteady laminar heat transfer enhancement in asymmetrically heated vertical baffled channel under buoyancy effect is investigated numerically. The baffles are installed on the two walls in an offset manner with constant spacing. The governing equations are solved by the finite volume formulation using openFoam© open-source code. Air (Pr?=?0.71) is used as working fluid. The effects of Reynolds number (100–1400) and Grashof number (2.5?×?104 to 2?×?105) in addition to the baffle height (0.1–0.5) on heat transfer and friction factor are studied. The results are given in the form of dimensionless isotherm contours and streamlines in addition to the Nusselt number and friction factor. The results obtained revealed that the flow bifurcates to self-sustained oscillatory flow at moderate Reynolds number (below 600 for a blockage ratio of 0.25). The unsteady self-sustained flow leads to heat transfer enhancement up to 2.8 times for baffle height hb?=?0.25 and up to 3.7 when compared to the smooth channel. Unfortunately, this heat transfer is accompanied by an important increase in pumping power.  相似文献   

11.
A systematic numerical investigation of heat transfer in turbulent channel flow over dimpled surface is conducted. Both symmetric (or spherical) and asymmetric dimple with different depth ratios (h/D) and skewness (Dx and Dz) are considered for a series of Reynolds numbers Re2H (based on bulk velocity and full channel height) between 4000 and 6000 while Prandtl number Pr is fixed at 0.7. It is found that the optimum dimple configuration for enhancing heat transfer measured in terms of the volume goodness factor is obtained for the case of asymmetric dimple with a depth ratio of h/D = 15% and stream-wise skewness of Dx = 15%. The heat transfer capacity in terms of Nusselt number is significantly increased, while the associated pressure loss is kept almost to the same level as the symmetric dimple with the same depth ratio. The present study also suggests that the heat transfer enhancement is closely related to ejection with counter-rotating flow, intensified secondary flow and vortex structures at the downstream rim of asymmetric dimple. All these findings suggest that a carefully designed asymmetric dimpled surface presents a viable means of enhancing heat transfer compared to the symmetric dimple.  相似文献   

12.
A numerical investigation on periodic laminar flow and heat transfer behaviors in a three-dimensional isothermal wall square duct fitted with 30° angled baffles on lower duct wall only is presented. The computations based on a finite volume method with the SIMPLE algorithm have been conducted for the fluid flow in terms of Reynolds numbers ranging from 100 to 2000. The angled baffles with attack angle of 30° are mounted periodically on the lower duct wall to generate a longitudinal vortex flow through the tested duct. Effects of different baffle height and three pitch length ratios on heat transfer and flow characteristics in the duct are investigated. The study shows that the longitudinal vortex flow created by the baffle helps to induce impinging flows over the baffle trailing end sidewall and the inter-baffle cavity wall resulting in drastic increase in heat transfer rate over the test duct. The computational results reveal that the Nusselt number ratio and the maximum thermal enhancement factor values for using the angled baffle are, respectively, found to be about 7.9 and 3.1 at Re = 2000, BR = 0.3 and PR=1.5.  相似文献   

13.
The numerical simulation is used to obtain the unsteady laminar flow and convective heat transfer in the block-heated channel with the porous vortex-generator. The general Darcy–Brinkman–Forchheimer model is adopted for the porous vortex-generator. The parameters studies including porosity, Darcy number, width-to-height ratio of porous vortex-generator and Reynolds number have been explored on heat transfer enhancement and vortex-induced vibration in detail. The results indicate that heat transfer enhancement and vortex-induced vibration increase with increasing Reynolds number and width-to-height ratio. However, the porosity has slight influence on heat transfer enhancement and vortex-induced vibration. When Darcy number is 10?3 or 10?4, installing a porous vortex-generator with B/h = 1.0 improves overall heat transfer the best along heated blocks, and has a strong reduction of vortex-induced vibration.  相似文献   

14.
This work performed a detailed measurement of local heat transfer coefficients in a square channel with a perforation baffle by using the transient liquid crystal themography. The varied parameters were the Reynolds number, the baffle height, and the hole numbers on the perforation baffle. The results showed that the enhancements of local heat transfer appeared in the leading edge of the baffle due to the impinging effect, which was more significant when Reynolds number became larger or the baffle height became higher. Additionally, the heat transfer coefficients off center were better than those in the center at downstream of the baffle. It might be resulted from two secondary flows, which appeared off center after the airflow passed through the baffle. Baffles with various hole numbers but having same total hole area were also studied to find the heat transfer enhancement. The results depicted that the back facing step flow which had characteristics of backflow and flow reattachment had an important effect on the heat transfer characteristics at downstream of the baffle. Finally, the correlation for the location of the flow reattachment point (Xr) was proposed.  相似文献   

15.
The effect of a number of inclined perforated baffles on the flow patterns and heat transfer in the rectangular channel with different types of baffles is numerically and experimentally checked out. Reynolds numbers are varied between 23,000 and 57,000. The SST k − ω turbulence model is used in the method to predict turbulent flow. The baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5°. The results show that the flow patterns around the holes are entirely different with different numbers of holes and it significantly affects the local heat transfer, and two baffles provide greater heat transfer performances than a single baffle.  相似文献   

16.
Convection heat transfer from an array of discrete heat sources inside a rectangular channel has been investigated experimentally for air. The lower surface of the channel was equipped with 8×4 flush-mounted heat sources subjected to uniform heat flux; the sidewalls and the upper wall were insulated and adiabatic. The experimental parametric study was made for an aspect ratio of AR=2, Reynolds numbers 864≤ReDh≤7955, and modified Grashof numbers Gr*=1.72×108 to 2.76×109. From the experimental measurements, surface temperature distributions of the discrete heat sources were obtained and effects of Reynolds and Grashof numbers on these temperatures were investigated. Furthermore, Nusselt number distributions were calculated for different Reynolds and Grashof numbers. Results show that surface temperatures increase with increasing Grashof number and decrease with increasing Reynolds number. However, with the increase in the buoyancy affected secondary flow and the onset of instability, temperatures level off and even drop as a result of heat transfer enhancement. This outcome can also be observed from the variation of the row-averaged Nusselt number showing an increase towards the exit.  相似文献   

17.
In order to overcome the disadvantages of heat transfer performance in the shell side of the common circular cross section rod baffle heat exchanger with a low Reynolds number, a numerical simulation on fluid flow and heat transfer in the shell side with different types of rod baffles is carried out. The rod baffles include the circular cross section, trigonal cross section, and rhombic cross section. The influence of heat transfer enhancement and flow resistance reduction affected by baffles is summarized. It is indicated that the trigonal and rhombic cross section rod baffles present the better performance of heat transfer enhancement and flow resistance reduction. With the rhombic cross section rod baffles in the shell side, the higher heat transfer coefficient and overall property in the shell side are achieved when Re is lower, and the heat transfer coefficient in the shell side is 10% higher than that of a circular cross section rod baffle at the same Reynolds number. The trigonal and rhombic cross section rod baffles in the shell side give more optional structure forms for expanding the application scope of rod baffle heat exchangers. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20388  相似文献   

18.
An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with transverse ribs on one, two, three, and four walls is reported. Tests were performed for Reynolds numbers ranging from 10,000 to 80,000. The pitch-to-rib height ratio, P/e, was kept at 8 and rib-height-to-channel hydraulic diameter ratio, e/Dh was kept at 0.0625. The channel length-to-hydraulic diameter ratio, L/Dh, was 20. The heat transfer coefficient and friction factor results were enhanced with the increase in the number of ribbed walls. The friction roughness function, R(e+), was almost constant over the entire range of tests performed and was within comparable limits of the previously published data. The heat transfer roughness function, G(e+), increased with roughness Reynolds number and compared well with previous work in this area. Both correlations could be used to predict the friction factor and heat transfer coefficient in a rectangular channel with varying number of ribbed walls. The results of this investigation could be used in various applications of turbulent internal channel flows involving different number of rib roughened walls.  相似文献   

19.
Experiments have been conducted to investigate the heat transfer and friction factor characteristics of the fully developed turbulent airflow through a uniform heat flux tube fitted with diamond-shaped turbulators in tandem arrangements. In the experiments, strong turbulence and recirculation flow is expected by using tandem diamond-shaped turbulators (D-shape turbulator) connected to each other by a small rod and placed inside the test tube. The parameters for this study are consisted of Reynolds number (Re) from 3500 to 16,500, the included cone angle (θ = 15°, 30° and 45°), and the tail length ratio (TR = lt/lh = 1.0, 1.5 and 2.0) defined as the ratio of the tail length (lt) to the head length of turbulator (lh). The variation of Nusselt number and friction factor with Reynolds number under the effect of those parameters are determined and presented. The experimental result reveals that the heat transfer rate increases with increasing Reynolds number and the included cone angle (θ) but decreases with the rise of the tail length ratio (TR). This is because of the mixing of the fluid in the boundary layer thereby enhancing the convective heat transfer and increasing pressure loss. For the tube with the turbulator of θ = 45°, the heat transfer enhancement is found to be 67%, 57% and 46% for tail length ratio, TR = 1.0, 1.5 and 2.0, respectively. Correlations of the Nusselt number (Nu) and friction factor (f) are developed for the evaluation of interactive effects of using the turbulators on the heat transfer and pressure loss. The good agreement between the experimental and the correlated results is obtained within 5–7% deviation. In addition, the heat transfer enhancement efficiency determined under constant pumping power is also provided.  相似文献   

20.
This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号