首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field‐grown vines of cv. Sultana on either their own roots or grafted to a range of rootstocks, were drip‐irrigated at one of three salinity levels (0.40, 1.75 and 3.50 dS/m) over a five year period. Rootstocks were Ramsey, 1103 Paulsen, J17‐69 and 4 hybrids (designated R1, R2, R3 and R4) derived from parentage involving Vitis champini, V. berlandieri and V. vinifera. Grape juice total soluble solids, titratable acidity and pH were measured at harvest, while colour of dried fruit was measured before and after processing and again after six months storage. Damage index (an indicator of skin damage) was measured post‐processing; sugar crystal formation in dried grapes and dried grape compaction were measured post‐storage. There was a strong salinity x rootstock interaction for grape juice soluble solids concentration, soluble solids yield (the product of soluble solids concentration and fruit yield) and pH, but not for titratable acidity when analysed on the basis of 5 year means. Small increases (< 5%) in juice soluble solids concentration were recorded at medium salinity (1.75 dS/m) for the low vigour genotypes, Sultana on own‐roots and on J17‐69 rootstock, based on the 5 year means and Fisher's protected (interaction) LSDs. Moderate increases (< 10%) also occurred in years of low crop load e.g. 1993 at high salinity for the high vigour rootstock R2 and in 1995 at medium salinity for Sultana on own roots and at high salinity for Sultana on R1 rootstock. By contrast, decreases in soluble solids concentration occurred with increasing salinity for the high vigour rootstocks (Ramsey, 1103 Paulsen and R2) in years of high crop load e.g. 1992. Small (< 2%) increases in grape juice pH were recorded at high salinity for Sultana on R3 rootstock and moderate increases (< 7%) in grape juice titratable acidity were recorded at high salinity for Sultana on own roots and Sultana on J17‐69, R1, R2 and R4 rootstocks. Dried grapes from all treatments achieved a light amber colour (quality grade termed 5 crown light) and were generally of high quality. Sultanas from own‐rooted grapevines were redder (higher ‘a‐value’) than sultanas from 1103 Paulsen and Ramsey when assessed as unprocessed fruit, after processing (both years) and after 6 weeks storage. While soluble solids yields per vine were 23–31% lower at high salinity for Sultana on own roots and on R1, R3 and R4 rootstocks, they were unaffected by high salinity for Ramsey, 1103 Paulsen and R2 rootstocks. Moreover, soluble solids yields for Sultana on Ramsey, 1103 Paulsen and R2 rootstocks were 1.4 to 2.5‐fold higher than for Sultana on the other rootstocks at high salinity. This study has shown that over a 5 year period rootstocks such as Ramsey, 1103 Paulsen and R2 grafted with Sultana were tolerant of salinity, producing dried grapes of generally high quality.  相似文献   

2.
Vegetative growth and yield of grapevines grown in the field on their own roots or grafted to a range of rootstocks were investigated under drip irrigation with water of three salinity levels (0.40, 1.75 and 3.50 dS/m) over a five‐year period. Rootstocks were Ramsey, 1103 Paulsen, J17–69 and 4 hybrids (designated R1, R2, R3 and R4) derived from parentage involving Vitis champini, V. berlandieri and V. vinifera. Of measured yield components (bunches per shoot, bunches per vine, weight per bunch, weight per berry and total yield), only weight per berry was significantly reduced by high salinity (3.50 dS/m) in each year of the trial with the exception of Sultana on 1103 Paulsen and R2 in 1991 and Sultana on Ramsey in 1993. Weights of one‐year‐old pruning wood were also reduced by high salinity in all years for own roots and all rootstocks, with the exception of R2. Mean yield values at each salinity level over the five‐year period of the trial were highest for Sultana on Ramsey, 1103 Paulsen and R2. High salinity had no effect on five‐year mean yields of Sultana on Ramsey, 1103 Paulsen and R2. Yield (five‐year means) of Sultana on Ramsey and R2 at 1.75 dS/m were significantly higher than at 0.40 dS/m by 14.6% and 13.4% respectively. In contrast, 5‐year mean yields of Sultana on J17–69, own roots, R1, R3 and R4 at 3.50 dS/m were reduced by 54, 30, 20, 30 and 30% respectively. Yield of Sultana on J17–69, R1 and R4 rootstocks was reduced by 47, 20 and 24% respectively at 1.75 dS/m. When yield was regressed against bunches per vine and weight per bunch for Sultana on own roots and on Ramsey rootstock, bunches per vine was the main determinant of yield, while weight per berry showed a poor correlation with yield at all salinity levels. Rootstock ranking for salt tolerance based on yield at high salinity was the same as rankings for pruning wood weights at high salinity. The same occurred at medium salinity, demonstrating that vigour imparted by the rootstock was a major factor in Sultana salt tolerance as measured by yield. Mean root weighted soil saturation paste electrical conductivities (RWECe) (determined from soil saturation paste salinities and root length densities) were in the range 2.0–2.6 dS/m for the low salinity treatment, increasing to approximately 5.4 dS/m with increasing salinity of irrigation water. Yield reduction for own‐rooted vines for each 1.0 dS/m increase in RWECe above 2.6 dS/m was 9.3%.  相似文献   

3.
Background and Aims: Within-site comparisons were made of rootstock effects on yield, and chloride and sodium concentrations in petioles, juice and wine of Shiraz and Chardonnay vines at sites with irrigation water salinities (ECiw) ranging from low (0.4 dS/m) to moderate-high (1.8 to 3.3 dS/m). It also compared consistency of yield performance of the various rootstocks with both scions over 8 years at one site with an ECiw of 2.1 dS/m. Methods and Results: Chardonnay and Shiraz on own roots and on Ramsey, 1103 Paulsen, 140 Ruggeri, K51-40, Schwarzmann, 101-14, Rupestris St. George and 1202 Couderc were compared. Ramsey resulted in better yields relative to most of the other rootstocks at three of the four sites for each scion. Exceptions were the low salinity site where Schwarzmann was best with Chardonnay, and Padthaway where 140 Ruggeri was best with Shiraz. Chardonnay wine chloride concentrations were similar to grape juice chloride concentrations, but Shiraz wine chloride concentrations were on average 1.7-fold higher than grape juice chloride. Conclusions: Shiraz on own roots, K51-40 and 1202C rootstocks carry some risk of accumulating unacceptable levels of chloride in grape juice and wine when the salinity of the irrigation water is at moderate to high levels. Rootstocks K51-40 (with Chardonnay and Shiraz) and potentially 101-14 (with Shiraz) should be avoided in situations of long term irrigation with moderate to high salinity water. Significance of the Study: The study identifies rootstocks with acceptable yields and grape juice chloride concentrations for potential use in regions affected by salinity.  相似文献   

4.
Three data sets derived from 5– or 6‐year field experiments at Merbein (Victoria), Dareton (New South Wales) and Loxton (South Australia) were used to assess the relationship between yield of own‐rooted or grafted grapevines and electrical conductivity of the saturated soil paste extract (ECe). This involved a non‐linear least squares fit method to determine the threshold of ECe at which yield begins to decline and the slope of the yield reduction with increasing ECe above that threshold. Threshold and slope are the two key parameters in this piece wise linear model of grapevine response to salinity. The soil ECe values were integrated to take account of both spatial and temporal variation in soil salinity within the profile. The ECe threshold for own‐rooted Sultana at Merbein in the Sunraysia region was found to be 2.3 0.2 dS/m and the slope of yield reduction above the threshold was 8.9 1.2 % per 1 dS/m increase in soil ECe. At Dareton, a similar threshold of 2.1 0.3 dS/m was found for own‐rooted Sultana, however the higher slope of the yield reduction (15.0 2.0 %) relative to the same vines at Merbein may have been related to the higher sodium adsorption ratio (SAR) in irrigation water and its impacts on soil physical properties, especially in that part of the vineyard with a heavier soil type. The rootstock Ramsey resulted in a threshold of 3.3 0.2 dS/m and slope of 5.7 0.4% with the scion Colombard at Loxton, indicating a more tolerant combination of scion‐rootstock to salinity. The rootstocks 1103 Paulsen and R2 with Sultana as scion were the most salt tolerant, with no discernible yield reduction until ECe exceeded about 4 dS/m. Of four other rootstocks with Sultana as scion, compared with own‐rooted Sultana, J17–69, and R4 had similar threshold values (2.3 0.2 and 2.5 0.2 dS/m) and slopes of yield reduction (10.1 1.9 % and 8.0 0.5 %, respectively), while R1 had a similar threshold of 1.8 0.2 dS/m but a lower slope of yield reduction (4.3 0.9 %) than Sultana on own roots and R3, J17–69, R1 and R4 rootstocks. Comparatively, R3 rootstock responded differently by way of a higher threshold of 3.0 0.2 dS/m than own‐rooted Sultana and J17–69 and R1 rootstocks and a higher slope of yield reduction of 12.4 1.0 % relative to Sultana on own roots and R4 and R1 rootstocks. Based on our long‐term studies of yield‐salinity relationships on contrasting sites, the pre‐eminence of certain rootstocks in conferring tolerance to soil salinity has been confirmed. Ramsey, 1103 Paulsen, and a new hybrid designated here as R3 were generally outstanding, with Ramsey varying only slightly in its comparative effectiveness when grafted to different scion varieties. An overall interaction between scion variety and rootstock genotype was thus evident in the form of yield‐salinity relationships.  相似文献   

5.
Salinity treatments of 0.43, 1.7 and 3.4 dS/m were applied through a drip-irrigation system to four-year-old vines of own-rooted Sultana (SO) and Sultana on Ramsey rootstock (Sr) The vines were planted in spring 1987 and established for two years under irrigation with low salinity (0.43 dS/m) water before commencing the range of salinity treatments in spring 1989. The effects of salinity and rootstock on yield, size and composition of berries, canopy size, lamina CO2 assimilation, leaf water relations and lamina ion concentrations were studied between veraison and harvest during the second season of salinity treatments. Mature leaves of SR had higher rates of CO2 assimilation (leaf area basis) and stomatal conductance than comparable leaves of SO. The high salinity treatment (3.4 dS/m) reduced CO2 assimilation rate of SO but not of SR. Medium salinity (1.7 dS/m) had no significant effect on CO2 assimilation rate of either type. Laminae of SO accumulated significantly higher concentrations of chloride than SR vines at all salinity levels. There was a significant negative correlation (r2= 0.44) between CO2 assimilation rate and laminae chloride of SO. Leaf sodium concentrations increased with increasing salinity, but concentrations in laminae at high salinity were similar in SO and SR, with SR showing no reduction in CO2 assimilation. Leaf potassium concentrations were higher in SR, but decreased with increasing salinity, whereas magnesium concentrations were similar in SO and SR vines but increased in both at high salinity. Leaf water potential and relative water content were not significantly affected by salinity in either SO or SR vines. Both vine types had reduced total leaf area and pruning wood weights as salinity increased, but they were greater in SR at all salinity levels because of the higher inherent capacity for biomass production in SR vines. The bigger canopies, lower lamina chloride concentrations and ‘normal’ photosynthesis rates of SR vines at 3.4 dS/m enabled these vines to mature crops with similar berry weights, sugar contents and fruit yield compared with those of SO vines at 0.43 dS/m. The research demonstrated the benefit of using Ramsey rootstock for Sultana under saline field conditions and provided a physiological explanation for their higher salt tolerance.  相似文献   

6.
Shiraz and Chardonnay grapevines that had been initially assessed for Cl exclusion in the 1996 and 1997 harvest seasons at both Merbein (inland region of Victoria) and at Padthaway (sub‐coastal region of South Australia), were re‐evaluated in 2003 and 2004 at those same two locations. Both scion varieties were grown either on their own roots or were grafted to one of the following rootstocks: Ramsey, 1103 Paulsen, 140 Ruggeri, K51‐40, Schwarzmann, 101‐14, Rupestris St George and 1202 Couderc. Both sites had been irrigated with saline water since 1994. The salinity of irrigation water at Merbein was approximately 2.1 dS/m; at Padthaway irrigation salinity varied between approximately 1.6 dS/m and 2.5 dS/m during the survey period. Changes in the Cl‐excluding ability of all rootstock/scion combinations between 1996, 1997 and 2003, 2004 were based upon analysis of Cl concentrations in grape juice and in laminae at harvest, as well as Electrical Conductivity (EC), pH and Sodium Adsorption Ratio (SAR) of the 1:5 soil:water extract. Taking juice Cl as indicative of rootstock effectiveness for Cl exclusion, and considering data from Merbein, our analyses demonstrated that overall means for Shiraz juice Cl increased from around 190 to 427 mg/L over the survey period (7 years). In Chardonnay grapevines at Merbein, overall mean concentrations of Cl in juice increased from around 70 to around 225 mg/L over 7 years. Significant differences between rootstocks were evident, with some rootstocks at Merbein showing a diminished capacity for Cl exclusion in 2003 and 2004. By contrast, in Padthaway there was no consistent deterioration in Cl‐excluding capacity by rootstocks supporting either Shiraz or Chardonnay as scions. In 2004 there were significant differences between grapevines at Merbein and Padthaway in the concentration of Cl accumulated, even though the mean soil EC1:5 after harvest for 0–90 cm depth was the same at both sites, namely 0.4 dS/m. Containment of grapevine salinity at Padthaway (relative to Merbein) between 1996/97 and 2003/04 was most likely due to factors such as a lower volume of saline irrigation, double the rainfall and 27% lower pan evaporation.  相似文献   

7.
Shiraz grapevines on either their own roots, or on the rootstocks Ramsey, 1103 Paulsen, 140 Ruggeri or 101–14, were grown at two separate sites within the Murray‐Darling viticultural region with similar irrigation regimes but with an irrigation water salinity of either 0.43 dS/m (low salinity site) or 2.3 dS/m (high salinity site). Rootstock effects on grape berry development, ion concentrations, soluble solids and acidity were followed during one season. Wines were also made and compared using spectral analysis and sensory evaluation. Rootstock effects that were common across both sites were (1) a close relationship between K+and soluble solids accumulation in developing grape berries which commenced at the onset of veraison and was indicative of a link between K+and sucrose transport in the phloem, and (2), higher wine K+, pH and colour hue for all rootstocks with one exception, namely 101–14 at high salinity where 101–14 responded similarly to own roots. Juice K+, pH and loss of K+from juice during winemaking were highest for grapes from the high salinity site. Mean berry weight was smaller and the range in berry size across rootstocks was narrower at the saline site. The narrower range in berry sizes may have contributed to fewer rootstock effects on wine spectral characteristics at high salinity. There was no effect of rootstock on CO2 assimilation rate or stomatal conductance at either site, although intrinsic leaf‐based water‐use efficiency measured as A/g was 50% higher at the saline site. All treatments exhibited berry shrivel at maturity, but the extent was smaller at high salinity. Slower development of berry colour during veraison was observed on some rootstocks, for example 101–14, and while unrelated to canopy size per se, a higher leaf‐to‐fruit ratio for 101–14 may have been a factor. Slower berry colour development during veraison had no bearing on the colour density of wine made from the harvested grapes.  相似文献   

8.
Chardonnay grapes from a rootstock trial in the Murray Valley region of South Australia were sampled for two seasons and concentrations of free amino acids in grape extract ('juice') were determined. The lowest concentrations of free assimilable amino-N were measured in Chardonnay grapes from vines on 140 Ruggeri and 101–14 rootstocks, and the highest concentrations were in grapes from vines on their own roots, Schwarzmann and K51–40. Free assimilable amino-N concentrations were sufficient to sustain fermentation through to completion. Arginine concentrations were generally too low to expect significant concentrations of urea in the wine. Amino-S concentrations were much lower and varied less than amino-N concentrations. The effect of any particular rootstock on the concentration of total free amino acids in Chardonnay grape 'juice' did not appear to be related to the known effects of those rootstocks on the NO3-N status of petioles at flowering. The concentrations of leucine, iso-leucine, valine, threonine, tyrosine and phenylalanine were generally higher in Chardonnay grapes grafted onto K51–40 in comparison to grapes from Chardonnay vines grafted on the other rootstocks. Any of these amino acids may be associated with the presence of specific higher alcohols in wine.  相似文献   

9.
Yeast cells have a minimum N requirement to ferment a must through to dryness, so that grape N content (hence must N) becomes critical in meeting that prerequisite. Viticultural practices aimed at meeting that N requirement are of special relevance because interactions between rootstock and vineyard nitrogen supply strongly influence scion mineral nutrient status as well as shoot vigour, and via those processes, fruit composition. Such outcomes were investigated in a field trial involving Shiraz on three rootstocks viz. Teleki 5C, Schwarzmann and Ramsey. Five N supply regimes, varying from 0 to 80 kg/(haseason), were imposed through a drip-irrigation system during two periods (either flowering to veraison, or post-harvest to leaf-fall, or both) over three successive growing seasons. Post-harvest N supply increased scion leaf N and nitrate N concentrations at flowering for vines on Teleki 5C and Schwarzmann. By veraison, N recently applied in the flowering to veraison period elevated these indicators of N status in all vines on all rootstocks. Grape yields from vines on Teleki 5C and Schwarzmann were elevated by N supply after harvest, whereas juice soluble solids levels were lowered. Free amino acids in Shiraz juice were dominated by non-assimilable N, amounting to about 50% or more of the total free amino-N in the juice. Increasing N supply increased free amino acid concentrations in the juice of berries from vines on all rootstocks, but only vines on Schwarzmann derived any benefit from N supplied after harvest. The highest concentrations of free amino acids were measured in the berries from vines on Schwarzmann receiving 80 kg N/(ha.season). Of immediate practical relevance for N management of Shiraz grapevines on either Teleki 5C or Ramsey rootstocks, the minimum value for assimilable free amino-N concentration required to ferment a must through to dryness was not achieved if vineyard N application was limited to the post-harvest period.  相似文献   

10.
Field-grown vines ( Vitis vinifera L. cv. Sultana) were examined for their fruitfulness and yield performance over four growing seasons. Vines were either grafted to Ramsey rootstock ( Vitis champini ) or were grown on their own roots. Four commercially applied trellising systems were investigated, namely, a T-trellis, a Shaw trellis with a double cordon, a Shaw trellis with a single cordon and a Shaw swing-arm trellis. Fruiting potential was assessed shortly after budburst using the Merbein bunch count method. Bunches on vines that had been counted in springtime were again counted at harvest, and vine yield recorded. During the four years of the experiment fruitfulness was strongly influenced by growing season. Fruitfulness per node along the cane followed a well-established trend. Bud fruitfulness was close to zero in basal nodes but increased steeply thereafter reaching a maximum between nodes 8 and 10. Fruitfulness then decreased steadily. Grafted vines were always less fruitful than own-rooted vines, and this difference was amplified for all trellis designs in years when fruitfulness was low. At the time of pruning, more canes were retained on grafted than own-rooted vines in accordance with the greater vigour of grafted vines. This pruning strategy resulted in a larger number of bunches on grafted relative to ungrafted vines.  相似文献   

11.
Background and Aims: This study reports on the effects that timing of saline irrigation has on leaf and wood tissue concentrations of Na+ and Cl and on juice composition. Methods and Results: Colombard vines on Ramsey rootstock were drip irrigated with saline water during any one of four annual growth stages: pre‐flowering, berry formation, berry ripening and postharvest. At other times, vines were irrigated with non‐saline water as was the control. Salts were annually flushed from the rootzone. Over six seasons, saline irrigation caused five‐ and sevenfold rises, respectively, in the leaf and juice Na+ concentrations and two‐ and fourfold rises in respective Cl concentrations. Saline irrigation raised juice pH and this was associated with a rise in juice Na+. Normalising responses for inter‐treatment differences in the seasonal salt load to isolate the effects of timing showed that juice Cl concentration was most sensitive to saline irrigation during berry formation and juice malate concentration most sensitive to saline irrigation pre‐flowering. Conclusion: Cl uptake was greatest when saline irrigation was applied early in organ formation, whereas Na+ uptake reflected seasonal salt load in irrigation water. Significance of the Study: In vines on the chloride excluding rootstock Ramsey, yield loss under saline irrigation was associated with high concentrations of sodium in the leaf.  相似文献   

12.
Biosynthesis of flavour compounds in Muscat Gordo Blanco grape berries   总被引:2,自引:0,他引:2  
Inflorescences of the floral grapevine cv Muscat Gordo Blanco (syn. Muscat of Alexandria) were grown on their own shoots until maturity or, after approach-grafting before flowering, on the shoots of the non-floral cv Shiraz (in the glasshouse) or Sultana (in the field). The flavour compounds of their berries were compared with those in the berries of the non-floral cultivars, grown either on their own shoots or, by grafting, on the shoots of the Muscat cultivar. For this, monoterpene glycosides were isolated from the fruits, enzymatically hydrolysed and the released monoterpene aglycons were liquid-liquid extracted and analysed by GC-MS. The Muscat Gordo Blanco berries of ungrafted bunches and of bunches grafted onto Shiraz or Sultana vines yielded fruit with monoterpenes at levels and types typical of this floral grape variety. The berries of Shiraz and Sultana bunches contained only low levels of monoterpene glycosides both on their own shoots or grafted onto Muscat shoots. The lack of difference between flavour compounds in grafted and non-grafted fruit indicate that aroma compounds are synthesised in the berries and that their presence is determined by the genotype of the grape bunch rather than by the genotype of the vine.  相似文献   

13.
Whole berries, leaf blades and petioles from Muscat Gordo Blanco (syn. Muscat of Alexandria), Sultana and Flame Seedless vines were sampled at intervals from three weeks after flowering to fruit ripeness. The glycosidically-bound constituents present in the samples were quantified through a determination of the glycosyl glucose. At the stage of berry ripeness, the concentration of glycosides per gram fresh weight in the leaf blades was 10–30 times higher than in the fruit. During berry development glycoside concentrations increased in leaf blades and petioles but decreased in fruit. However, when expressed on a per berry basis, the levels of glycosides in the fruit increased as ripening progressed; the levels in ripe fruit were high in Muscat Gordo Blanco and low in Sultana. Further experimentation will be needed to establish whether the glycosides are synthesised in the leaves and transported to the berries or synthesised independently in both organs.  相似文献   

14.
Background and Aims: pH adjustment during winemaking is a significant cost to the Australian wine industry. This study addresses potassium (K+) concentration and pH inter‐relationships in grape juice and wine of Chardonnay and Shiraz. Methods and Results: Chardonnay and Shiraz on own roots, and on Ramsey, 1103 Paulsen, 140 Ruggeri, K51‐40, Schwarzmann, 101‐14, Rupestris St. George and 1202 Couderc were compared at Koorlong and Merbein (Victoria), and Padthaway, Nuriootpa and Rowland Flat (South Australia). Petiole K+ concentrations at flowering were a poor indicator of grape juice and wine K+ concentrations. The concentration of H+ ions in grape juice and wine decreased as K+ concentrations increased resulting in increased pH. The relationship between H+ and K+ concentrations was linear for Chardonnay but exponential for Shiraz, where K+ concentrations were higher. Wine K+ and grape juice K+ concentrations exhibited a positive linear relationship, with slope for Chardonnay about half that for Shiraz, indicating a net loss of K+ between grape juice and wine of 58% for Chardonnay and 13% for Shiraz. Conclusions: The study has linked higher wine pH to both higher juice soluble solids and K+, and to poorer wine colour hue. Loss of K+ during fermentation and cold stabilisation appeared higher for Chardonnay than for Shiraz. Significance of the Study: Rootstocks that lead to lower K+ concentrations and pH in grape juice and wine are identified. Differences in the K+ concentration dynamics between grape juice and wine of Chardonnay and Shiraz are described and quantified.  相似文献   

15.
Background and Aims: In the first decade of the 21st century, drought within the Murray–Darling Basin has reduced the amount of water available for irrigation. We investigated whether the response of vines to reduced irrigation was modified by rootstock. Methods and Results: Reduced irrigation (5 versus 8 ML/(ha·year)) was applied to Chardonnay vines grafted to five rootstocks (Ramsey, 140 Ruggeri, 1103 Paulsen, 110 Richter and K51‐40) for four seasons. It decreased the yield from 29.3 to 26.7 kg/vine, and increased the irrigation water use index (IWUI) from 4.7 to 6.6 t/(ha·ML), but gains in this index declined as the trial progressed. The values of mid‐afternoon leaf water potential were not affected by reduced irrigation, but leaf CO2 assimilation declined from 13.1 to 11.7 µmol/(m2·s). These effects were independent of rootstock. Reduced irrigation did not increase soil salinity (ECe) or vine tissue Na and Cl concentrations. Vines on Ramsey and 1103 Paulsen rootstocks had higher yields, 32.2 and 30.0 kg/vine, respectively, and the highest IWUIs, 5.9 and 5.5 t/(ha·ML). In two of the three seasons, reducing irrigation did not affect the rates of ripening (°Brix/growing degree days) excepting vines on 1103 Paulsen. Ripening rates varied by 1.5‐fold between seasons. Conclusion: The yield and growth responses of Chardonnay vines to a 35% reduction in irrigation were not modified by rootstock. Significance of the Study: Reducing irrigation did not lead to a build‐up of soil salts. The response of vines to reduced irrigation on rootstocks rated as having good drought tolerance was the same as that for vines on a rootstock rated as having poor drought tolerance.  相似文献   

16.
Background and Aims: Molybdenum deficiency(Mo-deficiency) has been suggested to be the cause of poor yield of own-rooted Merlot vines in Australia. The aims of these experiments were to quantify the effect of foliar molybdenum treatment (Mo-treatment) on vine molybdenum status and to identify which components of yield are affected by Mo-treatment. Methods and Results: Experiments were conducted on own-rooted Vitis vinifera cv. Merlot in South Australia in 2003–07. Vines were sprayed with two rates of sodium molybdate (0, 0.101 and 0.202 g/vine) in the spring. Vine molybdenum status was assessed at flowering and juice molybdenum concentration was measured at harvest. The effects of Mo-treatment on vine growth and yield were also measured. Mo-treatment significantly increased yield of molybdenum deficient vines, a function of improved fruitset. Mo-treatment significantly increased the concentration of molybdenum in the petioles, shoot tips and inflorescences compared with the controls. Budburst was delayed on molybdenum-treated vines in the spring following Mo-treatment. The concentration of molybdenum in grape juice only increased in vines that had sufficient molybdenum. Conclusions: Mo-treatment increased vine molybdenum status; however, yield only increased on Mo-deficient vines. The increase in yield was a function of improved fruitset. Significance of the Study: This research demonstrates a significant positive relationship between vine molybdenum status and fruitset of own-rooted Merlot vines.  相似文献   

17.
BACKGROUND: Turnip‐rooted parsley, a field‐crop of northern Europe, has recently been introduced to the Mediterranean region for fresh consumption or production of essential oil. Because of soil salinity within this area, the sensitivity of turnip‐rooted and two other parsley subspecies (plain‐ and curly‐leafed) to salt was studied. RESULTS: NaCl or CaCl2 additions to the irrigation water raised the electrical conductivity (EC) in increments from 0.5 dS m?1 to 4.5 dS m?1 (year 1) or 6.0 dS m?1 (year 2), reducing parsley foliage weight in year 2, but increasing the root weight of turnip‐rooted parsley in year 1. Raising the EC with NaCl increased the yield of foliar essential oil from curly‐leafed parsley (both years), but not from the other cultivars. CaCl2 had less effect on oil yield. The relative concentrations of the principal aroma constituents (β‐phellandrene, myristicin, β‐myrcene and apiole) of the foliar essential oil were affected by NaCl or CaCl2 in a way that differed between cultivars. Oil yield from parsley roots was very low and apparently unaffected by salinity. CONCLUSION: All three parsley subspecies are moderately sensitive to salinity, but may be cultivated at <4.5 dS m?1 EC. Salinity may assist oil production by increasing oil yield (curly‐leafed parsley) and positively affecting certain aroma constituents. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
This study was conducted over three seasons on irrigated Shiraz grapevines growing in a warm climate. We addressed the question of whether differences in berry size (within a population of berries from minimally pruned, own‐rooted or Ramsey‐grafted vines), would lead to differences in juice composition, wine composition or wine sensory score. Predictably, berry mass was found to increase with seed number, but berries in the smallest mass categories (0.3–0.7 g) still had similar juice soluble solids and pH; and similar concentrations of K+, tartaric acid and malic acid, compared with larger berries (1.4–2.0 g). Only for the very smallest mass category (0.3–0.55 g) was there any indication of better colour density (both for own‐rooted and Ramsey‐grafted vines) or higher anthocyanin concentration (for own‐rooted vines) compared with larger berries (1.4–2.0 g). Concentrations of tartaric acid and K+ in berry skins were highest in the smallest berry mass categories (0.3–0.7 g) and decreased with increasing berry mass (up to 1.4–2.0 g). A strong correlation (R2= 0.85) between skin tartaric acid and K+ concentrations was observed across that range. Small‐scale wine lots based on small berries (0.8–0.9 g) versus large berries (1.2–1.3 g) showed no differences in measures such as soluble solids, total acids or pH of juice; nor any differences in pH, total acids, K+, tartrate, malate, spectral characteristics or sensory score of corresponding wines. Moreover, small berries had a similar skin to fruit ratio, and a similar juice yield, compared to large berries. However, when measured post‐fermentation, the ratio of seed weight to skin weight was higher for small berries. The mass range of berries used here for small‐scale winemaking (i.e. from 0.8–0.9 g up to 1.2–1.3 g), covered the range of Shiraz berry mass typically found in irrigated vineyards (from 0.8 to 1.5 g), and thus confirms the relevance of present outcomes to practical winemaking. Finally, our data for variation in juice and wine composition as a function of berry size, showed consistent trends for all seasons, and thus implies that reported instances of improved wine quality from small berries (often associated with certain pruning treatments or deficit irrigation strategies), are more likely due to treatment effects that lead to small fruit, rather than to intrinsic developmental differences between large and small berries.  相似文献   

19.
Background and Aims: Rootstocks influence the inorganic ion and organic acid composition of grapes of the scion variety. The aim was to investigate the impact of rootstocks on the inter-relationship of inorganic ions and organic acid anions in the skin and pulp of grapes and in resultant wine. Methods and Results: Vines were irrigated with water having electrical conductivities in the range 1.6–2.1 dS/m. Chloride, sodium, potassium, malic and tartaric acid concentrations were higher in almost all cases in skin than in pulp. Significant positive correlations existed between chloride and sodium concentrations in both pulp and skin. A significant negative linear regression existed between malic acid and both chloride and sodium concentrations in skin of Chardonnay berries. There were positive linear regressions in chloride concentration between berry (pulp and skin) and resultant wine chloride in both Chardonnay and Shiraz. Conclusion: The higher malic acid and lower chloride concentrations in skin of most grafted Chardonnay and Shiraz vines, and vice versa for own rooted vines, may indicate competition for similar transporter proteins involved in loading into skins. Alternatively, higher salt concentrations in skins may be associated with accelerated malic acid catabolism. Significance of the Study: Chloride-excluding rootstocks demonstrated advantages through reduced chloride (but not sodium) in pulp and skin of grape berries and in resultant wines. Where rootstocks reduced chloride concentrations in skin of grape berries, there is potential for higher malic acid in skin and in the resultant red wines.  相似文献   

20.
Background and Aims: Traditionally, the start of cane pruning is delayed until after leaf fall, when carbohydrate accumulation and cane maturity are complete. However, by starting immediately after harvest, the period for pruning may be increased by at least 4 weeks, reducing peak labour demands. Trials were conducted to investigate the consequences of various pruning times on vine phenology and yield. Methods and Results: Vines were pruned using 2‐ or 4‐canes at one of four times during the winter from shortly after harvest to just before bud break in the spring. Pruning shortly after harvest caused no significant adverse effects on vine phenology or productivity. Pruning just before bud break delayed vine development. Stored total carbohydrate concentrations in the trunk were unaffected by pruning time or cane number retained after pruning. Conclusions: Carbohydrates accumulated in the trunks of grapevines to adequate levels by harvest and any post‐harvest photosynthesis and/or cane maturation that may be occurring at this time had little effect on subsequent vine growth and development. Pruning shortly before bud break delayed bud break and may be an advantage where vines are at risk to spring frosts. Significance of Study: In cool climates where leaves senesce shortly after harvest, pruning immediately after harvest will have no adverse effects on subsequent vine phenology or yield, but will extend the period available to prune the vines, reducing the peak labour demand in the vineyard. Pruning late, slightly delays bud break potentially providing greater tolerance to late spring frosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号