首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of the active layer in polymer:fullerene solar cells is a key parameter for the performance. We compare bilayer poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT/PCBM) solar cell devices produced from orthogonal solvents before and after thermal annealing with P3HT:PCBM bulk heterojunction solar cells produced from a single solvent. By comparing the spectral shape and magnitude of the experimental and theoretically modeled EQEs we show that P3HT/PCBM bilayers made via orthogonal solution processing do not lead to bilayers with a sharp interface but that partial intermixing has occurred. Thermal annealing of these diffusive P3HT/PCBM bilayers leads to increased mixing but does not result in the same mixed bulk heterojunction morphology that is obtained when P3HT and PCBM are cast simultaneously from single solution. For thicker layers, the annealed bilayers significantly outperform the bulk heterojunction devices with the same nominal composition and same total thickness.  相似文献   

2.
Control of blend morphology at the microscopic scale is critical for optimizing the power conversion efficiency of plastic solar cells based on blends of conjugated polymer with fullerene derivatives. In the case of bulk heterojunctions of regioregular poly(3-hexylthiophene) (P3HT) and a soluble fullerene derivative ([6,6]-phenyl C61-butyric acid methyl ester, PCBM), both blend morphology and photovoltaic device performance are influenced by various treatments, including choice of solvent, rate of drying, thermal annealing and vapour annealing. Although the protocols differ significantly, the maximum power conversion efficiency values reported for the various techniques are comparable (4-5%). In this paper, we demonstrate that these techniques all lead to a common arrangement of the components, which consists of a vertically and laterally phase-separated blend of crystalline P3HT and PCBM. We propose a morphology evolution that consists of an initial crystallization of P3HT chains, followed by diffusion of PCBM molecules to nucleation sites, at which aggregates of PCBM then grow.  相似文献   

3.
A bicontinuous, percolating bulk heterojunction morphology is integral to organic polymer solar cells. Understanding the factors affecting the miscibility of photovoltaic polymers with a fullerene electron acceptor molecule is a key to controlling the morphology. Starting from discreet pure phases - a poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bilayer film - the evolution of the P3HT-PCBM interface was studied with particular attention to the role of residual solvent in P3HT on PCBM interdiffusion. This investigation shows that in the bilayer geometry PCBM can rapidly diffuse into amorphous P3HT, but phase separation is maintained if the P3HT layer is cast from a very volatile solvent or if it is annealed prior to casting the PCBM overlayer to complete the bilayer geometry.  相似文献   

4.
Using transmission electron microscopy (TEM) and Z-contrast imaging we have demonstrated elongated nanostructure formation of fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) within an organic host through annealing. The annealing provides an enhanced mobility of the PCBM molecules and, with good initial dispersion, allows for the formation of exaggerated grain growth within the polymer host. We have assembled these nanostructures within the regioregular conjugated polymer poly(3-hexylthiophene) (P3HT). This PCBM elongated nanostructure formation maybe responsible for the very high efficiencies observed, at very low loadings of PCBM (1:0.6, polymer to PCBM), in annealed photovoltaics. Moreover, our high resolution TEM and electron energy loss spectroscopy studies clearly show that the PCBM crystals remain crystalline and are unaffected by the 200-keV electron beam.  相似文献   

5.
We study the top surface composition of blends of the conjugated polymer regioregular poly-3-hexylthiophene (P3HT) with the fullerene (6,6)-phenyl-C(61)-butyric acid methyl ester (PCBM), an important model system for organic photovoltaics (OPVs), using near-edge X-ray absorption fine structure spectroscopy (NEXAFS). We compare the ratio of P3HT to PCBM near the air/film interface that results from preparing blend films on two sets of substrates: (1) poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) coated indium tin oxide (ITO) as is commonly used in conventional OPV structures and (2) ZnO substrates that are either unmodified or modified with a C(60)-like self-assembled monolayer, similar to those that have been recently reported in inverted OPV structures. We find that the top surface (the film/air interface) is enriched in P3HT compared to the bulk, regardless of substrate or annealing conditions, indicating that changes in device performance due to substrate modification treatments should be attributed to the buried substrate/film interface and the bulk of the film rather than the exposed film/air interface.  相似文献   

6.
Mono-layers of aggregated Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) molecules were obtained by using solutions of P3HT, PCBM and P3HT-PCBM mixture without stabilizers such as stearates in chloroform at an air-water interface. 1 to 10 cycle-lifted LB films of P3HT and PCBM were successfully transferred to cleaned bare indium-tin-oxide coated glass substrate by vertical lifting method excluding the first 1 to 2 cycle layer. The dependence of P3HT and PCBM film thickness on the transfer cycles has been explained by the molecular sizes, where four edge-on P3HT molecular and six PCBM molecular stacking which result in thickness was taken into account. Work functions of deposited LB-layers were consistent with those of the ordinary casted films. P3HT and PCBM LB-layers showed optical activity in both infra-red (IR) and visible absorption regions of the spectrum. P-polarized IR absorption owing to C=C and C=O stretching vibrations observed in LB-layered films clearly indicate the enhancement of the orientation of these bonds perpendicular to the substrate surface in contrast to the spin-coated one. Visible optical absorption intensity was increased well in proportion with the lift cycle-numbers of both P3HT and PCBM LB films. The photovoltaic characteristics have been observed in the devices fabricated with P3HT (5 cycles-layer)/PCBM (5 cycles-layer) LB hetero structure as an active layer of the solar cells. The surface pressure of LB compression for the mixture of P3HT and PCBM, that is, bulk hetero mixtures, has also been well built up to 30 mN/m.  相似文献   

7.
An ultrathin lithium fluoride (LiF) buffer layer was applied to inverted polymer solar cells with P3HT [poly(3-hexylthiophene)]:PCBM [[6,6]-phenyl C61-butyric acid methyl ester] blend films. By inserting the LiF layer between the transparent electrode and the P3HT:PCBM blend film, all parameters, including the short-circuit current, the open-circuit voltage and the fill factor, were enhanced compared to those of a reference cell without the LiF layer. The power conversion efficiency of the device with the LiF layer was thereby improved by more than 300% relative to the reference cell.  相似文献   

8.
One inherent limitation to the efficiency of photovoltaic solar cells based on polymer/fullerene bulk heterojunctions (BHJs) is the accumulation of positive charges at the anodic interface. The unsymmetrical charge collection of holes and electrons dramatically decreases the short-circuit current. Interfacial layers (IFLs) such as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) have no effect on the unbalanced electron/hole transport across the BHJ. We report here on the use of dithiapyrannylidenes (DITPY), a new class of planar quinoid compounds, as efficient hole-transporting/electron-blocking layers in organic solar cells based on poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) BHJs. Inserting a 15-nm-thick IFL of 4,4'-bis(diphenyl-2,6-thiapyrannylidene) (DITPY-Ph(4)) between the indium-tin oxide electrode and the P3HT:PCBM BHJ prevents detrimental space-charge effects and favors recombination-limited currents. Current-sensing atomic force microscopy reveals a drastic increase of the hole-carrying pathways in DITPY-Ph(4) compared to PEDOT:PSS. In ambient conditions, photovoltaic cells using DITPY-Ph(4) exhibit an 8% increase in the current density, although the conversion efficiency remains slightly lower compared to PEDOT:PSS-based devices. Finally, we present a detailed analysis of the photocurrent generation, showing that DITPY-Ph(4) IFLs induce a transition from unproductive space-charge-limited currents to recombination-limited currents.  相似文献   

9.
Nam S  Han J  Do YR  Kim H  Yim S  Kim Y 《Nanotechnology》2011,22(46):465403
We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.  相似文献   

10.
The direct writing approach of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) composite from bulk-heterojunction (BHJ) solar cell was efficiently addressed by inkjet printing technology using conventional chlorobenzene ink solution. The structure of inkjet-printed P3TH:PCBM BHJ film was fabricated by the repetitive direct writing of new line overlapped partially on former line. The best structure of P3HT:PCBM film for BHJ solar cell was observed from inkjet printing condition of around 50% of droplet overlaps with 2 wt.% BHJ ink at 25 °C of substrate temperature. The maximum power conversion efficiency reached 2.83% with an open circuit voltage of 0.62 V, a short circuit current density of 8.60 mA/cm2, and a fill factor of 0.53 under air mass 1.5 G irradiation (100 mW/cm2).  相似文献   

11.
In an ideal model, a p-n junction is formed by two stacked slabs of semiconductors. Although the construction of actual devices is generally more complex, we show that such a simple method can in fact be applied to the formation of organic heterojunctions. Two films of the organic semiconductors poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) can be connected by a simple film-transfer method without disturbing their flat surfaces. Each film can further be modified with a surface-segregated monolayer to tune the strength and direction of the surface dipole moment. Using this method, we fabricated bilayer organic photovoltaic devices with interfacial dipole moments that were selected to align the energy levels at the heterojunction. The open-circuit voltages of the P3HT/PCBM devices could be tuned over a wide range between 0.3 and 0.95 V, indicating that, even if the same combination of bulk materials is used, the interfacial properties drastically alter the performance of organic photovoltaic devices.  相似文献   

12.
为探究有机太阳电池活性层聚集体结构与器件效率的关系,本文以丙酮和正己烷为不良溶剂,诱导聚(3-己基噻吩)(P3HT)分子结晶,通过改变两种溶剂的滴加时长,制备了一系列尺寸均匀、分散性好以及分子排列有序的P3HT纳米颗粒。利用原子力显微镜(AFM),紫外可见光谱仪(UVVis),X射线衍射仪(XRD)等手段表征了纳米颗粒的尺寸、形貌和结晶有序性。将P3HT纳米颗粒和[6,6]-苯基-C61-丁酸甲酯(PCBM)混合成膜制备了本体异质结有机太阳电池,发现基于尺寸相近但沿π-π堆砌方向结晶更有序的P3HT纳米颗粒的器件显示更高的光电转换效率。  相似文献   

13.
The effect of a nanoscale boron subphthalocyanine chloride (SubPc) interfacial layer on the performance of inverted polymer solar cells based on poly (3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) was studied. When a 1 nm SubPc layer was introduced between the active layer (P3HT:PC(71)BM) and MoO(x) in the device with ITO/ZnO/P3HT:PC(71)BM/SubPc/MoO(x)/Al configuration, the power conversion efficiency (PCE) was increased from 3.42 (without SubPc) to 3.59%. This improvement is mainly attributed to the enhanced open-circuit voltage from 0.62 to 0.64 V. When the Flory-Huggins interaction parameters were estimated from the solubility parameters through the contact angle measurement, it revealed that the interaction between SubPc and PC(71)BM is more attractive than that between SubPc and P3HT at the interface of P3HT:PC(71)BM/SubPc, through which charges are well transported from the active layer to the anode. This is supported by a decrease of the contact resistance from 5.49 (SubPc 0 nm) to 0.94 MΩ cm (SubPc 1 nm). The photoelectron spectra provide another evidence for the enhanced PCE, exhibiting that the 1 nm thick SubPc layer extracts more photoelectrons from the active layer than other thicknesses.  相似文献   

14.
We use helium ion microscopy (HeIM) to image the nanostructure of poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butric acid methyl ester (P3HT/PCBM) blend thin-films. Specifically, we study a blend thin-film subject to a thermal anneal at 140 °C and use a plasma-etching technique to gain access to the bulk of the blend thin-films. We observe a domain structure within the bulk of the film that is not apparent at the film-surface and tentatively identify a network of slightly elongated PCBM domains having a spatial periodicity of (20 ± 4) nm a length of (12 ± 8) nm.  相似文献   

15.
Using high surface area nanostructured electrodes in organic photovoltaic (OPV) devices is a route to enhanced power conversion efficiency. In this paper, indium tin oxide (ITO) and hybrid ITO/SiO(2) nanopillars are employed as three-dimensional high surface area transparent electrodes in OPVs. The nanopillar arrays are fabricated via glancing angle deposition (GLAD) and electrochemically modified with nanofibrous PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate)). The structures are found to have increased surface area as characterized by porosimetry. When applied as anodes in polymer/fullerene OPVs (architecture: commercial ITO/GLAD ITO/PEDOT:PSS/P3HT:PCBM/Al, where P3HT is 2,5-diyl-poly(3-hexylthiophene) and PCBM is [6,6]-phenyl-C(61)-butyric acid methyl ester), the air-processed solar cells incorporating high surface area, PEDOT:PSS-modified ITO nanoelectrode arrays operate with improved performance relative to devices processed identically on unstructured, commercial ITO substrates. The resulting power conversion efficiency is 2.2% which is a third greater than for devices prepared on commercial ITO. To further refine the structure, insulating SiO(2) caps are added above the GLAD ITO nanopillars to produce a hybrid ITO/SiO(2) nanoelectrode. OPV devices based on this system show reduced electrical shorting and series resistance, and as a consequence, a further improved power conversion efficiency of 2.5% is recorded.  相似文献   

16.
We report on the validation of a method based on Kelvin probe force microscopy (KPFM) able to measure the different phases and the relative work function of polymer blend heterojunctions at the nanoscale. The method does not necessitate complex ultra-high vacuum setup. The quantitative information that can be extracted from the topography and the Kelvin probe measurements is critically analysed. Surface voltage difference can be observed at the nanoscale on poly(3-hexyl-thiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blends and dependence on the annealing condition and the regio-regularity of P3HT is observed.  相似文献   

17.
S Lee  JS Yeo  Y Ji  C Cho  DY Kim  SI Na  BH Lee  T Lee 《Nanotechnology》2012,23(34):344013
Flexible organic solar cells (OSCs) composed of blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated and investigated with chemically doped multilayer graphene films as transparent and conducting electrodes on plastic substrates. The sheet resistance of the chemically doped graphene film was reduced to half of its original value, resulting in a significant performance enhancement of OSCs featuring doped graphene electrodes. Moreover, there was no substantial variation observed in the fill factor and power conversion efficiency values of the flexible OSCs under bending conditions. A power conversion efficiency of ~2.5% for flexible OSCs with doped graphene electrodes was observed under bending conditions, even up to a 5.2?mm bending radius.  相似文献   

18.
We investigated the influence of thermal annealing on the structural and optical properties of two variations of organic nanocomposite materials; 1) poly [3-hexylthiophene] and [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM), and 2) poly [3-hexylthiophene] and [6,6]-phenyl C71 butyric acid methyl ester) (P3HT:PC71BM). The evolution of surface roughness and morphology was investigated using atomic force microscopy while device electrical properties were investigated by measuring current-voltage (I-V) characteristics. Upon thermal treatment, results show that P3HT:PC71BM nanocomposites produce a more homogeneous mixture of finer grain size than P3HT:PC61BM. Furthermore, stronger optical absorption in the visible region is observed in P3HT:PC71BM compared to P3HT:PC61BM. Since optical absorption is closely related to film crystallinity, it is inferred that P3HT:PC71BM composites undergo more extensive crystallization upon annealing. Photoluminescence spectra of both P3HT:PC61BM and P3HT:PC71BM nanocomposites (dissolved in chlorobenzene) show that each has excellent quenching effects. I-V characteristic curves show that P3HT:PC71BM registers higher current density under AM 1.5 illumination than does P3HT:PC61BM. For the devices described in this paper having active areas of approximately 12 mm2, efficiency is approximately 33% better for C71-based solar cells than that observed for devices made using C61 fullerene.  相似文献   

19.
Yang S  Zhao N  Zhang L  Zhong H  Liu R  Zou B 《Nanotechnology》2012,23(25):255203
We demonstrate a solution-processed colloidal quantum dot (CQDs) photodetector with the configuration of a field-effect transistor (FET), in which the drain and source electrodes are fabricated by a shadow mask. By blending PbS CQDs into the hybrid blend, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methylester (PCBM), the photosensitive spectrum of the nanocomposite blend is extended into the near-infrared region. A FET-based photodetector ITO/PMMA (180?nm)/P3HT:PCBM:PbS (110?nm)/Al, in which PMMA (polymethylmethacrylate) acts as the dielectric layer and P3HT:PCBM:PbS (in weight ratio of 1:1:1) as the active layer, shows a broad spectral bandwidth, a responsivity of 0.391?mA?W(-1) and a specific detectivity of 1.31?×?10(11) Jones are obtained at V(GS)?=?1?V under 600?nm illumination with an intensity of 30?μW?cm(-2). Therefore, it provides an easy way to fabricate such a FET-based photodetector with a channel length of some hundreds of micrometers by a shadow mask.  相似文献   

20.
Doping improves performance. N- or B-doped carbon nanotubes (CNTs) uniformly dispersed in the active layer of P3HT/PCMB (poly (3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester) bulk-heterojunction solar cells selectively enhance electron or hole transport and eventually help carrier collection. Specifically, the incorporation of 1.0 wt% B-doped CNTs results in balanced electron and hole transport and accomplishes a power conversion efficiency improvement from 3.0% (without CNTs) to 4.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号