共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了用TOA作萃取剂从废钒催化剂酸浸液中萃取钒,考察了各影响因素对钒萃取率的影响,确定了最佳萃取参数。试验结果表明:用10%TOA+4%癸醇+86%磺化煤油作萃取剂,在水相pH=2.5、有机相与水相体积比(Vo∶Va)=1∶3、萃取时间2.5min、静置时间5min条件下,钒的单级萃取率高达95.2%;用0.6mol/L Na2CO3溶液进行2级反萃取,钒的反萃取率在99%以上;反萃取液可直接沉淀钒,产品V2O5质量达到GB3283—1987冶金99级标准。萃余液可集中处理。该工艺简单,综合效益显著。 相似文献
2.
主要研究了废锂电池酸浸液杂质除杂原理,采取“两段酸浸—中和除Fe、Al—絮凝除F—深度除杂”非萃取除杂工艺。在除杂过程中,由于酸浸液含高浓度Ni、Co、Mn离子,中和剂的种类和浓度将影响Ni、Co、Mn的损失率。通过工艺控制及中和剂调试,选择10%CaCO3作为除Fe、Al、F中和剂,Fe、Al、Cu、F含量可分别从0.20、9.76、0.58、1.66 g/L降至0.01、0.02、0.01、29.86 mg/L,达到三元前驱体溶液杂质标准要求。此时,Ni、Co、Mn的损失率分别仅为0.96%、0.04%、0.01%,均在接受范围之内。 相似文献
3.
4.
5.
采用溶剂萃取的方法,对从废旧镍氢电池酸浸液中选择性提取稀土进行了探索。实验探索出合适的萃取体系,研究了料液初始pH值、萃取温度、混合强度、萃取时间、萃取相比等因素对萃取效果的影响,考察了反萃剂组成、浓度、反萃相比等因素对反萃效果的影响,并测出稀土的萃取等温线。在此基础上进行了工厂扩大试验,结果表明:经5级逆流萃取,稀土的萃取率可达99.99%。混合反萃液经草酸沉淀,得到的稀土纯度为98.49%,杂质金属含量均小于0.05%。所选萃取有机相对稀土有良好的选择性,可实现稀土与其他元素的分离。 相似文献
6.
用P204从钛氯化烟尘酸浸液中萃取钪 总被引:2,自引:0,他引:2
本文是以二-(2-乙基己基)磷酸(P204)为萃取剂,从钛的氯化烟尘盐酸浸出液中萃取钪与分离Fe、Mn的实验。结果表明,当O/A=1/20时,钪的一级萃取率达86%;Fe、Mn的萃取率均小于2%。原始溶液中氧化钪/杂质=1/1000,萃取后有机相中氧化钪/杂质=1/12,钪富集83倍。 相似文献
7.
采用萃取法从石煤高酸浸出液中优先萃取分离硫酸,考查还原剂用量、萃取剂浓度、萃取温度、萃取时间对硫酸萃取率的影响。结果表明,在还原剂亚硫酸钠用量2g/L、萃取剂三异辛胺浓度40%、萃取温度25℃、萃取时间2min、相比O/A=1/1的条件下,经4级萃取,浸出液中硫酸浓度由110g/L降低至5.25g/L,浸出液pH升高至2.3,可直接用于萃取钒。以60℃热水为反萃剂、O/A=1/3条件下,经5级反萃,99%以上的硫酸可被反萃出来。萃取过程无其它药剂消耗,有机相可循环使用,且回收的硫酸可再利用。 相似文献
8.
系统研究了转炉钒渣无焙烧酸浸液中钒与铁的萃取分离情况。进行萃取-反萃单因素试验,分别考察萃取温度、初始p H值,萃取剂组成、萃取相比,萃取、反萃时间,反萃剂浓度、反萃相比等因素对萃取和反萃结果的影响。萃取试验结果表明:在常温(20℃),浸出液p H2.0,有机相组成20%P204+5%TBP+75%磺化煤油,相比(O/A)1∶1,震荡时间5 min条件下,钒的一级萃取率达到74.49%,铁的萃取率仅为1.92%,其他离子不进入有机相;该条件下进行四级错流萃取,钒的总萃取率可达97.89%。反萃试验结果表明:反萃时间4 min,反萃剂浓度200g/L,反萃相比(O/A)5∶1时,钒的反萃率达98.58%,有机相中的铁不进入反萃水相,提钒酸浸液得到净化。 相似文献
9.
10.
研究了N235从石煤硫酸浸出液中直接萃取钒的工艺参数,考察N235体积分数、萃取时间、萃取温度、相比等对钒萃取率的影响。结果表明,最佳萃取工艺参数为:N235体积分数40%、有机相与水相相比1∶4、25℃萃取6min,钒两级总萃取率为97.82%;以0.8mol/L的碳酸钠溶液为反萃剂、有机相与水相相比3∶1、在25℃反萃6min,钒两级总反萃率大于99%,钒与其他主要杂质元素分离。 相似文献
11.
从含钒石煤酸浸液中溶剂萃取钒的试验研究 总被引:3,自引:0,他引:3
研究了从某含钒石煤酸浸液预处理后的溶液中溶剂萃取。用P204-TBP-磺化煤油组成的有机相萃取,用硫酸溶液反萃取,用酸性铵盐沉淀钒。试验考察了有机相组成、水相平衡pH、萃取剂浓度、相比、振荡时间等因素对钒萃取率的影响,确定了萃取工艺条件为:有机相组成为12.5%P204+5%TBP+82.5%磺化煤油,Vo∶Va=2∶1,三级逆流萃取。结果钒萃取率大于99.00%;用硫酸溶液经三级逆流反萃取,钒反萃取率大于97.00%;制备的V2O5产品纯度大于98.00%。 相似文献
13.
14.
用某镍矿粗制的氢氧化镍中,铁、钙、镁、硅、铜、锌、钴等杂质含量较高,进一步氨浸后,镍、铜、锌、钴等生成金属-氨络合物进入溶液,用氨性萃取剂萃取、硫酸反萃取,可将镍与其他杂质分离,获得满足电积要求的镍溶液. 相似文献
15.
试验了从废镍催化剂中回收镍并生产硫酸镍。废镍催化剂用硫酸溶解并去除硅酸之后,通过碱析获得粗硫酸镍产品,再通过净化、二次碱析及结晶,获得纯度较高的NiSO4.7H2O产品。该方法可从废镍催化剂中充分回收镍资源,并对环境有利。 相似文献
16.
为积极响应国家“双碳”目标,开发高效选择性钒页岩酸浸液净化分离工艺对页岩提钒行业意义重大。在本研究中,从溶液pH值、杂质离子(铁、铝和镁)浓度和反萃剂3个因素对比了新型羟肟类萃取剂Mextral 984H和有机磷类萃取剂P204的萃取行为。结果表明,Mextral 984H的最佳萃取pH值在0.5~1.5,P204的最佳萃取pH值在1.5~2.4,相比于P204,Mextral 984H与钒形成的钒萃合物结构更稳定,钒氧键键长值更小,分子间隙更大,钒萃合物在酸性环境中更容易稳定存在。Fe(Ⅲ)、Al(Ⅲ)和Mg(Ⅱ)对Mextral 984H萃取V(Ⅴ)的影响较小,而在P204中,Fe(Ⅲ)对V(Ⅳ)的萃取影响较大,将Al(Ⅲ)和Mg(Ⅱ)的浓度控制在10 g/L以下,可降低Al(Ⅲ)和Mg(Ⅱ)的共萃率。碳酸钠和草酸对Mextral 984H负载有机相的单级反萃率均超过80%。 相似文献
17.
18.
19.