首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In order to extend tool life and improve quality of hole drilling in carbon composite materials, a better understanding of ‘one shot’ hole drilling is required. This paper describes the development of an empirical model of the maximum thrust force and torque produced during drilling of carbon fiber with a ‘one shot’ drill bit. Shaw's simplified equations are adapted in order to accommodate for tool wear and used to predict maximum thrust force and torque in the drilling of carbon composite with a ‘one shot’ drill bit. The mathematical model is dependent on the number of holes drilled previously, the geometry of the drill bit, the feed used and the thickness of the workpiece. The model presented here is verified by extensive experimental data.  相似文献   

2.
Micromachining using miniature metal bond grinding tools is widely used in microelectromechanical systems. However, dressing of these micro-tools is time-consuming and likely to damage the abrasives. In this paper, a novel dressing technique called electrochemical discharge dressing (ECDD) is presented. A dull micro-end grinding bit and an auxiliary electrode are connected to the cathode and anode of a power supply, respectively. The auxiliary electrode is immersed in an electrolyte, and the grinding face of the tool is in contact with the electrolyte surface. During dressing, metal bond on the tool-electrolyte interface is progressively removed subjected to electrochemical discharge effect, thus creating grain protrusion. Experiments were conducted to evaluate the dressing performance of ECDD in terms of surface morphology of the tool, grinding force and surface roughness of the workpiece. Experimental results show that abrasive grains on the tool protrude without observable damage. The normal grinding force and the surface roughness of the workpiece are reduced by half after dressing.  相似文献   

3.
李琳  曹岩  贾峰  黄亮 《机床与液压》2021,49(7):67-73
电解加工技术是目前航天航空发动机核心零部件涡轮叶片的主要加工方法之一。叶片电解加工工具阴极设计方法与修正是提高叶片电解加工精度的关键。电解加工中阴极进给角度、工件装夹角度和工件型面法线方向夹角的规范性和均匀性是影响阴极设计准确性的重要因素。分析某小型发动机涡轮转子叶片三维模型结构,建立叶片型面上各采样点对应的阴极工具型面加工间隙的分布规律模型。优化阴极进给角度与毛坯件装夹角度,结合电场仿真分析进行优化,研究提高阴极型面设计精确度的电解加工阴极型面模型的设计方法。  相似文献   

4.
The thrust force and torque produced during drilling contain important information related to the quality of the hole and the wear of the drill bit [1]. In this paper, the force and torque produced during drilling of carbon fibre using a ‘one shot’ drill bit is investigated. The signals in the time domain were divided into stages and common problems and defects associated with each stage discussed. It is also shown how tool wear and thickness of the workpiece affect the thrust force and torque throughout the drilling process. The findings of this paper are used to develop a mathematical model of the maximum thrust force and torque as described on Part II of this paper and are a valuable reference for future optimisation of drilling carbon composites with a ‘oneshot’ drill bit.  相似文献   

5.
Deep hole drilling processes, which differ significantly from conventional drilling processes, are relevant for a lot of different applications where holes with high length-to-diameter-ratios and very good qualities are necessary. This paper gives an overview of different methods, which are established to produce bore holes with demanding aspects related to diameter, length-to-diameter-ratio, bore hole quality, workpiece materials and complex internal contours. Beside the detailed explanation of the deep hole drilling methods and tools also the fundamentals of the deep hole drilling principle are explained and completely new developed figures and tables summarize the state of the art. In addition for the most important areas the latest results of process and tool development are included.  相似文献   

6.
针对曲轴箱上挺杆孔直径小、位置深、尺寸精度高,各孔加工精度相同等特点,设计了工序比较集中的三工位钻扩铰组合机床,利用三工位转塔头实现钻、扩、铰三工步的转换,节约生产成本,避免定位误差;利用一套夹具装置对工件实行一次快速定位夹紧,避免了工件的重复定位误差;采用悬挂式活动钻模板,解决了细长刀杆刚度不足问题和刀具的定位、导向问题。利用该机床可实现工件快速装卸和可靠定位夹紧,可自动完成三个工位的工作循环,劳动强度低,生产效率高。  相似文献   

7.
《CIRP Annals》1987,36(1):273-276
A new machining process, called mill-drilling has been developed, made up by a combination of deep hole drilling and Milling. The origin, the main characteristica of the process, the tools and the machine tools are being explained. A typical advantage of the mill-drilling process is the constant production of short chips even with tough workpiece materials. A special Problem of the mill-drilling tool is the dynamic behavior of the highly elastic miller drive. Some main points of influence on the dynamic tool load are shown and the results of the mill-drilling tool with and without vibrations. Advantages and disadvantages of the mill-drilling in comparison to conventional drilling processes are discussed.  相似文献   

8.
Tool wear and profile development in contour grinding of optical components   总被引:1,自引:1,他引:0  
Wear induced changes in grinding tool profile have been studied for a CNC contour grinding process designed for the fabrication of precision optical components. Tool profile was measured experimentally by examining the “footprint” left by the tool when subsequently fed into a prepared surface. A numerical model was developed to predict detailed tool profiles as a function of the process parameters and total removal. Wear caused the development of approximately flat bevels on tools initially trued to a spherical shape, changing both the height and position of the lowest cutting point on the tool, with the potential to produce significant profile errors on the workpiece surface. The observation of approximately flat tool bevels was also used to develop an analytic solution for the tool shape evolution. With this analytic approximation contact height and width can be readily estimated and could be incorporated into an algorithm to adjust the tool path.  相似文献   

9.
为了精确预测端铣加工面尺寸误差,利用铣削动态力卷积模型,引入表面生成窗概念,并考虑到工件与刀具的变形误差、机床空间误差与刀具偏摆的影响,建立了加工面尺寸误差预测模型。通过在铣床上进行实验,验证了该模型能够正确预测工件尺寸误差及其分布范围,且在铣刀轴向切深、主轴转速和进给速度一定的情况下,增加径向切深不会对工件尺寸误差产生显著影响。  相似文献   

10.
This paper presents a study of the effect of process parameters on production accuracy obtained through ultrasonic drilling of holes in alumina based ceramics using silicon carbide abrasive. Production accuracy in ultrasonic drilling involves both dimensional accuracy (hole oversize) and form accuracy (out-of-roundness and conicity). The parameters considered are workpiece material, tool material, grit size of the abrasive, power rating and slurry concentration. Taguchi’s optimization approach is used to obtain the optimal parameters. The significant parameters are also identified and their effect on oversize, out-of-roundness and conicity are studied. The results obtained are validated by conducting the confirmation experiments.  相似文献   

11.
为解决电解加工型孔的加工稳定性和形状精度等问题,建立了异形孔电解加工稳定过程中加工间隙数学模型,分析了工具阴极结构对加工区域和非加工区域的电场及其均匀性以及其对电流密度与加工效果的影响,通过优化工件结构改善了加工间隙内的电场分布,使工件形状精度显著提高,并进行相关试验对仿真结果进行验证。得出结论:在相同的电解加工参数下,工具电极的结构对工件的形状精度有着显著的影响,通过优化工具电极结构,改善加工间隙内的电场分布与电流密度,让加工间隙内的流场更为稳定,使工件侧壁垂直度提高,提高了电解加工的形状精度与加工稳定性。  相似文献   

12.
This study investigates the tool wear in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a conical tungsten carbide tool used for friction drilling a low carbon steel workpiece is studied. Tool wear characteristics are quantified by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectrometry is applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size are measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11,000 holes, but observations also indicate the progressively severe abrasive grooving on the tool tip.  相似文献   

13.
《CIRP Annals》2019,68(1):169-172
The effect of pulse current and tool immersion depth on gas film formation and its consequences on machining quality in the pulse electrochemical discharge machining (PECDM) of glass-fiber epoxy reinforced composite are studied. The frequency and duty cycle of the pulse current were controlled for discharging at no more than single spark per cycle. As compared to ECDM with DC current, the PECDM results in smaller hole diameter and smaller heat affected zone (HAZ). Also, lower tool immersion depth results in thinner gas film and smaller HAZ in the workpiece.  相似文献   

14.
Core drilling at small diameters in carbon composite materials is largely carried out using diamond electroplated tools consisting of hollow shafts and simplistic geometries that are likely to work in an abrasional/rubbing mode for material removal. The paper reports a step change in the performance of small diameter core drilling by facilitating a shearing mechanism of the composite workpiece through the utilisation of a novel tool design. This has been achieved by laser producing core drills from solid polycrystalline diamond, incorporating controlled cutting edges where the geometries are defined. To evaluate the efficiency of the shearing vs. abrasion/rubbing cutting mechanisms, a critical comparison between the novel (defined cutting edges) and the conventional electroplated tools (randomly distributed micro-grains) has been made with reference to thrust forces, tool wear mechanisms and their influences on the hole quality (e.g. delamination, fibre pullout). This work has been augmented by studies using high-speed thermal imaging of the two tool types in operation. The examinations have shown that, based on the concept of defined cutting edges in solid diamond, there is the possibility to make significant improvements in core drilling performance, (ca. 26% lower thrust force, minimal tool surface clogging, lower drilling temperatures) resulting in improved cleanliness of fibre fracture and a reduced tendency of material delamination.  相似文献   

15.
张贵锋  苏伟  张军  张建勋 《电焊机》2011,41(1):39-45
为直观证明倾斜工具能强化搅拌搭接摩擦焊中的锻压效应之事实,提出了一种新的实验方案(采用预先开有小孔的垫板)并获得了预期效果.采用无针柱状搅拌头与预先开有φ4mm小孔的垫板,分别在有/无倾角的两种情况下进行了2 mm厚薄铝板的搭接搅拌摩擦焊.结果表明,在倾角为3°情况下被挤入垫板小孔内的塑化金属的长度(5.3 mm)远大...  相似文献   

16.
对近年来微细电解加工领域的研究现状和发展趋势进行了概述,包括微细电解加工的基础理论、微细电解加工技术和加工装置、影响因素与极间间隙检测控制,以及关键技术和今后的发展方向.  相似文献   

17.
This two part paper presents a comprehensive exercise in modeling dynamics, kinematics and stability in drilling operations. While Part II focuses on the chatter stability of drilling in frequency domain, Part I presents a three-dimensional (3D) dynamic model of drilling which considers rigid body motion, and torsional–axial and lateral vibrations in drilling, and resulting hole formation. The model is used to investigate: (a) the mechanism of whirling vibrations, which occur due to lateral drill deflections; (b) lateral chatter vibrations; and (c) combined lateral and torsional–axial vibrations. Mechanistic cutting force models are used to accurately predict lateral forces, torque and thrust as functions of feedrate, radial depth of cut, drill geometry and vibrations. Grinding errors reflected on the drill geometry are considered in the model. A 3D workpiece, consisting of a cylindrical hole wall and a hole bottom surface, is fed to the rotating drill while the structural vibrations are excited by the cutting forces. The mechanism of whirling vibrations is explained, and the hole wall formation during whirling vibrations is investigated by imposing commonly observed whirling motion on the drill. The time domain model is used to predict the cutting forces and frequency content as well as the shape of the hole wall, and how it depends on the amplitude and frequency of the whirling vibration. The model is also used to predict regenerative, lateral chatter vibrations. The influence of pilot hole size, spindle speed and torsional–axial chatter on lateral vibrations is observed from experimental cutting forces, frequency spectra and shows good similarity with simulation results. The effect of the drill–hole surface contact during drilling is discussed by observing the discrepancies between the numerical model of the drilling process and experimental measurements.  相似文献   

18.
田卫军  李郁  何扣芳 《机床与液压》2014,42(21):161-163
为了提高TC4钛合金的可钻削性,采用有限元分析软件AdvantEdge建立TC4钛合金铣削加工有限元模型,分析工件和刀具上的温度分布规律,获得了钻削加工过程中钻削参数对钻削力和钻削温度的影响规律。结果表明:钻削TC4钛合金时最高温度出现在切屑上;钻削力随着主轴转速和进给量的增加而增大,随着钻头直径的增大而减小;钻削温度随着主轴转速、进给量和钻头直径的增加而增大。  相似文献   

19.
微细电火花小孔加工过程中存在的电极损耗问题,严重影响了孔的加工精度.以单脉冲放电理论为基础,改进了微细电火花小孔加工过程的仿真模型,对工具与工件加工形状的变化过程进行了仿真研究.与实验结果相比,模型能较好地预测电极损耗及其对工件形状精度的影响,从而为进一步研究电极离线补偿提供了一种经济、可行的方法.  相似文献   

20.
In cutting of brittle materials, experimentally it was observed that there is a ductile–brittle transition when the undeformed chip thickness is increased from smaller to larger than the tool cutting edge radius of the zero rake angle. However, how the crack is initiated in the ductile–brittle mode transition as the undeformed chip thickness is increased from smaller to larger than the tool cutting edge radius has not been fully understood. In this study, the crack initiation in the ductile–brittle mode transition as the undeformed chip thickness is increased from smaller to larger than the tool cutting edge radius has been simulated using the Molecular Dynamics (MD) method on nanoscale cutting of monocrystalline silicon with a non-zero edge radius tool, from which, for the first time, a peak deformation zone in the chip formation zone has been found in the transition from ductile mode to brittle mode cutting. The results show that as the undeformed chip thickness is larger than the cutting edge radius, in the chip formation zone there is a peak deformation depth in association with the connecting point of tool edge arc and the rake face, and there is a crack initiation zone in the undeformed workpiece next to the peak deformation zone, in which the material is tensile stressed and the tensile stress is perpendicular to the direction from the connecting point to the peak. As the undeformed chip thickness is smaller than the cutting edge radius, there is no deformation peak in the chip formation zone, and thus there is no crack initiation zone formed in the undeformed workpiece. This finding explains well the ductile–brittle transition as the undeformed chip thickness increases from smaller to larger than the tool cutting edge radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号