共查询到19条相似文献,搜索用时 61 毫秒
1.
2.
利用固态源分子束外延技术,按S-K模式生长出五层堆垛InAs/GaAs量子点(QD)微结构材料.用这种QD材料制成的激光器,内光学损耗为2.1cm-1,透明电流密度为15士10 A/cm2.对于条宽100μm,腔长2.4mm的激光器(腔面未经镀膜处理),室温下基态激射的波长为1.08μm,阈值电流密度为144A/cm2,连续波光功率输出达2.67W(双面),外量子效率为63%,特征温度为320K.研究了QD激光器翟激射特性,并对结果作了讨论. 相似文献
3.
利用固态源分子束外延技术,按S-K模式生长出五层堆垛InAs/GaAs量子点(QD)微结构材料. 用这种QD材料制成的激光器,内光学损耗为2.1cm-1,透明电流密度为15±10 A/cm2. 对于条宽100μm,腔长2.4mm的激光器(腔面未经镀膜处理),室温下基态激射的波长为108μm,阈值电流密度为144A/cm2,连续波光功率输出达2.67W(双面),外量子效率为63%,特征温度为320K. 研究了QD激光器翟激射特性,并对结果作了讨论. 相似文献
4.
5.
研究了非耦合多层InGaAs量子点材料光增益的温度特性,并与InGaAs单量子阱材料进行了对比,发现In-GaAs量子点表现出更好的增益温度稳定性,同时发现随着温度升高,在140-200K湿度范围内,InGaAs量子点增益峰值首先增大,当温度超过200K后开始减小,对这种增益特性的产生机制进行了分析,增益曲线峰值波长随温度升高单调地向长波长方向移动,与量子阱材料相比具有更好的温度稳定性。 相似文献
6.
通过对特殊设计的GaAs/InGaAs量子点.量子阱光电二极管的I-V和C-V特性测试,验证了器件的光子存储特性,在器件的读出设计中引入了特殊设计的带倒空信号的基于电容反馈互导放大器和相关双采样(CTIA-CDS)型读出电路.在633 nm辐照下,分别改变照度和积分时间进行了非倒空和倒空测试的对比研究,并计算给出了对应的存储电荷变化量,进一步证明了光电器件的光子存储特性. 相似文献
7.
研制了InGaAs/AlGaAs SQW激光器,对其工作特性如阈值电流密度、激射波长、特征温度、远场分布等进行了研究.
用MOCVD方法生长制备了InGaAs/AlGaAs分别限制单量子阱结构材料,得出其各层组分和能带分布.首先在GaAs衬底上生长GaAs缓冲层和AlGaAs波导层,然后生长窄能带的AlGaAs量子阱势垒层,再继续生长InGaAs量子阱有源区.其后继续生长AlGaAs势垒层、高Al组分AlGaAs波导层和GaAs高掺杂欧姆接触层.我们发现在低温范围里(160 K~220 K)阈值电流密度随温度升高而减小,与普通量子阱激光器正相反,表现出负的特征温度.随着温度进一步提高,阈值电流密度表现出指数式增大.300 K下腔长2000 μm的激光器最低的阈值电流密度约为200 A/cm2.(OD7) 相似文献
8.
9.
10.
11.
在InGaAs/GaAs量子阱中生长了两组InAs量子点样品,用扫描电子显微镜(SEM)测量发现,量子点呈棱状结构,而不是通常的金字塔结构,这是由多层结构的应力传递及InGaAs应变层的各向异性引起的.采用变温光致发光谱(TDPL)和时间分辨谱(TRPL)研究了其光致发光稳态和瞬态特性.研究发现,InGaAs量子阱层可以有效地缓冲InAs量子点中的应变,提高量子点的生长质量,可以在室温下探测到较强的发光峰.在量子阱中生长量子点可以获得室温下1 318 nm的发光,并且使其PL谱的半高宽减小到25 meV. 相似文献
12.
自组织生长方法作为一种有效而直接的制备半导体量子点的方法受到重视。本文采用无需在样品上制备电极的电容耦合的光伏谱方法,实验测量了In0.4Ga0.6As/GaAs自组织量子点在不同的温度下的光伏谱,对测量谱峰进行了指认,研究了量子点谱峰能量位置随温度的依赖关系,实验结果表明,量子点具有与体材料及二维体系不同的温度特性,对实验所测样品,其激子峰能量随温度增加而红移的速率约为GaAs体材料带隙变化的1 相似文献
13.
14.
Hong-Wen Ren Selvakumar V. Nair Jeong-Sik Lee Shigeo Sugou Yasuaki Matsumoto 《Journal of Electronic Materials》2000,29(5):520-524
Coupled quantum dot-pairs were fabricated by growing InP self-assembled islands as stressors on InGaAs/GaAs double quantum
wells. State filling in the photoluminescence spectra was used to resolve the quantum states in the coupled dots. The total
strain field below the stressor decays exponentially with a penetration depth of about 25 nm, within which a dot-pair can
be fabricated. Strong coupling is observed at a barrier width less than 4 nm separating the dot-pair. By increasing the indium
composition in the lower well in order to match its dot level with one in the upper dot with identical quantum numbers, resonant
coupling between the electron states with identical quantum numbers in the two dots can be achieved. Decoupling of the hole
states and exchange of the electron bonding states from dominating the upper dot to the lower one are clearly resolved from
the state energies and their spacings. 相似文献
15.
Structural and infrared absorption properties of self-organized InGaAs/GaAs quantum dots multilayers
Q. D. Zhuang J. M. Li Y. P. Zeng L. Pan Y. H. Chen M. Y. Kong L. Y. Lin 《Journal of Electronic Materials》1999,28(5):503-505
Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy.
Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the
growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical
alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the
range of 8.6–10.7 μm. This indicates the potential of QDs multilayer structure for use as infrared photodetector. 相似文献
16.
KONGLing-min CAIJia-fa WUZheng-yun GONGZheng NIUZhi-chuan 《半导体光子学与技术》2005,11(2):78-80,115
The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1. 48μm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15 K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers, which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature. 相似文献
17.
18.