首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
采用CaO,Fe2O3以及石灰石、硫酸渣助熔剂按不同比例与粉煤灰混合,对煤灰熔点的影响进行试验研究.结果表明,在还原性气氛下,添加适量CaO和Fe2O3可使粉煤灰熔点下降,当CaO添加率超过40%时反使灰熔点急剧上升;石灰石、硫酸渣中起助熔作用的成分是其中的CaO和Fe2O3,其助熔行为与分析纯CaO和Fe2O3基本一致  相似文献   

2.
通过添加CaCO3、MgO和Fe2O3三种助熔剂,考察其对宁东矿区两种煤样(1#、2#)灰熔融温度的影响,并利用三元相图及XRD对煤灰矿物组成进行分析.结果表明:在高温下煤灰中矿物质之间形成低温共熔物,使煤灰的灰熔点降低,且硅铝比较低的煤样具有较低的灰熔融温度.实验表明在弱还原性气氛中,三种助熔剂对2#煤样灰熔融温度的降低效果较明显.  相似文献   

3.
助熔剂对型煤灰熔融特征温度的影响   总被引:1,自引:0,他引:1  
研究了高灰熔点型煤灰成分与灰熔融特性的关系,考察了Fe2O3, MgO, CaO和固体水玻璃助熔剂对型煤灰熔融温度的影响. 结果表明,碱性氧化物与灰中所含矿物质在高温下易形成低共熔混合物,能有效降低型煤灰熔融温度. 加入等量(11%, w)的MgO, CaO及固体水玻璃、Fe2O3,流动温度分别下降了22.0, 58.8, 81.2和91.9℃. 通过三元相图及XRD分析揭示了物相组成变化和矿物晶体的存在形式. CaO, 固体水玻璃和Fe2O3适宜的添加量分别为11%, 9%和9%. CaO和固体水玻璃对型煤还具有粘结和促进气化作用,更适合作为助熔剂.  相似文献   

4.
李平  梁钦锋  刘霞  龚欣 《大氮肥》2010,33(2):107-111
以我国62组重要商业用煤的煤灰化学成分和灰熔融性为研究对象,讨论了酸碱比值与灰熔融流动温度的关系,结果表明酸碱比值越大,流动温度越高。考察了助熔剂CaO和Fe2O3不同添加量对6组高灰熔点煤灰熔融流动温度的影响。实验表明:同一煤样中添加相同质量的助熔剂CaO和Fe2O3,对酸碱比值的改变相同,但是其助熔效果不同,因此酸/碱比值不可当做衡量煤灰熔融特性的唯一参数。以6种煤的实测数据为基础,对助熔剂CaO添加量的经验公式的准确性和适用性作了分析。由于煤种的多样性与灰成分的复杂性,使得经验公式具有局限性,助熔剂添加量的确定仍需实验测量。  相似文献   

5.
气化条件下煤灰熔融性研究   总被引:2,自引:0,他引:2  
以CaO和Fe2O3为助熔剂,分别与7种煤样进行不同比例的混合,在气化条件下进行煤灰熔融性实验,降低煤灰熔融性温度,为生产合成气用煤的选择提供科学依据。实验结果表明,7种煤样的流动温度均能降至1400℃以下,煤灰添加CaO助熔剂时的灰熔融性温度变化比较稳定,而对Fe2O3助溶剂都较为敏感,仅在很小的含量范围内能达到最低点,而且规律性较差。  相似文献   

6.
以鄂尔多斯地区哈尔乌素煤为研究对象,利用光学显微镜和X射线衍射(XRD)等手段分析了煤中主要矿物组成,研究了助熔剂SiO_2,Fe_2O_3和CaO在不同添加量下对哈尔乌素煤灰熔融性温度的影响。利用FactSage软件中的Equilib模块,模拟了添加助熔剂前后煤中矿物的固相反应过程。结果表明:超过1 250℃后,哈尔乌素煤灰中的主要成分是长石和刚玉,刚玉质量分数超过了40%,这是原煤煤灰熔融性温度较高的重要原因。原煤中分别添加7%(质量分数,下同)的SiO_2,10%的Fe_2O_3和12%的CaO后,煤灰熔融温度降低幅度较大。高温下煤灰中部分耐高温矿物与助熔剂发生了固相反应,生成的低熔点矿物和低温共熔物是煤灰熔融性温度降低的直接原因。  相似文献   

7.
铁基助熔剂和钙基助熔剂能有效降低煤灰熔融温度,为了研究铁钙比(Fe2O3/CaO)对煤灰中耐熔矿物生成的抑制机理,根据煤灰化学成分组成,在三种不同系列的煤中加入含铁助剂,调整煤中的铁钙比,对煤灰进行灰熔融温度、煤灰成分分析,对还原性气氛下制备的煤灰渣进行X射线衍射分析(XRD).结果表明:加入含铁助剂可降低煤灰熔融温度,在相同铁钙比下,加入Fe助剂的煤灰熔融温度低于加入FeS2助剂的煤灰熔融温度,硫在煤灰中起增加煤灰熔融温度的作用;煤灰中铁钙比不同对高熔点矿物的生成影响不同,当铁钙比在1~2间时,灰渣中仅有钙长石,当铁钙比在3.5~5.5间时,灰渣中既有钙长石的也有耐熔矿物莫来石的存在,煤灰中铁质矿物和钙质矿物的含量对耐熔矿物的生成有很大影响.  相似文献   

8.
向延安子长禾草沟煤(2#煤)中添加不同含量的助熔剂碱性氧化物,研究碱性氧化物含量对煤灰熔融温度的影响,并结合X射线衍射和扫描电镜探讨添加助熔剂后煤灰的熔融机理.结果表明,几种氧化物中Na2O降低煤灰熔融点效果最好,可以使煤灰熔融温度从1 300℃降到1 195℃,降低幅度为105℃;其次是CaO,K2O和MgO,降低幅度分别为75℃,55℃和45℃.煤灰在熔融过程中,矿物成分的变化是导致煤灰熔融温度发生变化的主要原因.  相似文献   

9.
选择低灰熔点神华煤,研究了添加SiO2 、TiO2和Al2O3阻熔剂在弱还原性气氛下对煤灰熔融性的影响,利用X射线衍射分析方法研究阻熔剂对高温煤灰矿物转化行为和阻熔机理.实验结果表明:815℃时,煤灰中主要晶体矿物为硬石膏、赤铁矿、石英、石灰和方解石等;添加SiO2、TiO2和Al2O3阻熔剂都能够在一定程度上提高神华煤灰熔融温度,但Al2O3效果较好;在还原性气氛下,随温度升高至1100℃和1300℃,添加阻熔剂后的煤灰中的硬石膏、赤铁矿和方解石等晶体矿物逐渐减少,生成的新矿物质方石英、刚玉和金红石是导致煤灰熔融温度升高的主要原因.  相似文献   

10.
我国高灰熔点煤占煤炭储量的57%左右,直接用于气流床气化时将面临"积灰和堵渣"的问题,探索高灰熔点煤灰熔融特性的调控方法对气流床的稳定运行意义重大。主要分析了助熔剂和配煤对灰熔融温度的影响规律;并从矿物质演变机理的角度综述了助熔剂(Fe2O3,Ca O,Mg O,Na2O,K2O和复合助熔剂)、配煤和软件分析(FactSage软件热力学计算和Gaussian量子化计算)如何分析和实现高灰熔点煤灰熔融特性的可控调整;最后阐述了采用支持向量机进行煤灰熔融温度的预测存在精度高的优势。提出了寻找新型助熔剂以增强灰熔融温度调控的准确性和基于支持向量机模型建立煤灰成分与灰熔融温度的关联式,进而指导和优化气化配煤煤种和比例的选择,为高灰熔点煤的清洁高效利用提供理论支持。  相似文献   

11.
Fe_2O_3强化CaO粉末中温烟气脱硫的研究   总被引:1,自引:0,他引:1  
为了研究粉煤灰中Fe2O3含量对钙基脱硫性能的影响,分别以CaO和CaO与Fe2O3的混合物为吸收剂进行实验,并加以比较。研究了加入氧化铁添加剂后,对中温烟气脱硫性能的影响和对固定床干法脱硫最佳温度的影响,氧化铁配比对氧化钙脱硫性能的影响等。结果表明,加入一定量的氧化铁,可以显著提高脱硫效率和氧化钙的利用率。当温度在650~750℃时,氧化铁与氧化钙的配比为1∶10时效果最好,脱硫效率可达94%,钙利用率54%。  相似文献   

12.
选择准东高钙五彩湾(WCW)煤作为研究对象,通过改变煤灰中硅钙摩尔比(M)研究煤灰熔融特性及矿物演变的变化规律,进一步借助FactSage热力学计算软件进行矿物平衡预测。研究表明:在WCW原煤灰中,矿物CaSO4演变生成低熔点矿物Ca2MgSi2O7,使得原煤灰借助灰熔融温度(AFTs)预测其结渣、玷污时出现较大偏差。对于混煤灰,当M升高至3时,相比原煤灰,其中矿物CaSO4的分解提前,SiO2优先与CaO反应生成熔点较低的矿物CaMgSi2O6,进而引起混煤灰的熔点降低;当混煤灰中M升高至5时,充足的SiO2会与MgO发生反应,生成高熔点矿物Mg2SiO4,使得此时混煤灰的AFTs显著提升,改善了煤灰熔融特性。热力学计算矿物平衡结果与X射线衍射分析(XRD)结果吻合较好,吉布斯自由能结果验证了矿物演变过程的合理性。  相似文献   

13.
为研究MgO含量对高钠煤灰熔融特性的影响,配制了不同MgO含量的高钠合成灰并对灰熔融温度进行了测试。利用FactSage 7.0提供的热力学数据库建立了SiO2-Al2O3-Fe2O3-CaO-MgO-Na2O多元体系,模拟不同MgO含量的高钠合成灰的熔融过程。使用X射线衍射(XRD)和扫描电子显微镜(SEM)对合成灰的矿物质组成及微观形貌进行了研究。结果表明,随着MgO含量的增加,灰熔融温度先降低后升高。当MgO质量分数由0增加到5%时,高温下灰中生成大量低熔点的透辉石,透辉石会与霞石等矿物质形成低温共熔体,导致灰熔融温度降低。进一步增加MgO含量,高温下灰中生成镁黄长石、镁橄榄石和镁硅钙石等高熔点矿物质,使灰熔融温度升高。二元相图和似三元相图的结果表明,全液相温度随MgO含量的变化趋势与灰熔融温度相同。对本研究中的煤种,当MgO质量分数为30%时,可以有效提高灰熔融温度并抑制熔融液渣的生成。  相似文献   

14.
原始瓷釉的化学组成及显微结构研究   总被引:2,自引:0,他引:2  
通过研究我国古代众多原始瓷釉的化学组成和显微结构,进一步肯定了原始瓷釉是在陶器涂层的基础上发展起来的,并将此类釉分为二类:富Fe2Oe原始瓷釉及富CaO原始瓷釉。这两类釉分别是后期黑釉以及青釉发展的基础。早在周代中晚期的富Fe2O3原始瓷釉中已存在液-液分相结构,这是目前所发现最早分相釉。  相似文献   

15.
Study on the ash fusion temperatures of coal and sewage sludge mixtures   总被引:1,自引:0,他引:1  
Li Weidong 《Fuel》2010,89(7):1566-3939
The coal, sewage sludge, water and chemical additives are milled to produce coal-sludge slurry as a substitute for coal-water slurry in entrained-flow gasification, co-gasification of coal and sewages sludge can be achieved. The ash fusion temperature is an important factor on the entrained-flow gasifier operation. In this study, the ash fusion temperatures (DT, ST, HT and FT) of three kinds of coals (A, B and C), two kinds of sewage sludges (W1 and W2) and series of coal-sewage blends were determined, and the mineral composition during the ash melting process was analyzed by X-ray diffraction (XRD). The results showed that the ash fusion temperatures of most coal-sewage blends are lower than those of the coals and sewage sludges. The ashes have different mineral composition at different temperature during the heating process. It was found that the mineral composition of AW1 blend ash is located in the low-temperature eutectic region of the ternary phase diagram of SiO2-Al2O3-CaO. The minerals found in BW1 blend ash are almost the same as those in B coal ash. Kyanite is detected in CW1 blend ash, which results in the ash fusion temperatures of CW1 blend ash higher than those of C coal. We found that sodium mineral matters are formed because of NaOH added to W2, which can reduce the ash fusion temperature of coal-sewage blends.  相似文献   

16.
高灰熔融性好的寨崖底矿煤分别与低灰熔融性的露天煤、府谷煤按不同配比混合,制成2种配煤灰样,用HR-4灰熔点测定仪分别测定其在氧化性气氛和弱还原性气氛下的熔融特征温度。结果表明,配煤能有效改善煤灰熔融特性,但配煤灰熔融性变化与配比之间是非线性关系,弱还原性气氛下配煤改善效果显著。以硼砂作为助熔剂,按不同比例添加到高灰熔点煤潞安矿中,在弱还原性气氛下测定混煤灰熔融温度,结果表明添加少量比例的硼砂可以显著降低煤灰熔融性温度。对混煤灰进行的X-射线衍射实验表明,煤灰中矿物质形态的变化是混煤灰熔点降低的直接原因。  相似文献   

17.
宁东地区煤种灰熔融温度和灰黏度均较低,是影响宁东煤化工基地大型气流床气化技术长周期稳定运行的关键因素,用X射线衍射分析(XRD)、Factsage软件、灰熔融温度测定仪和高温黏度测定仪探讨煤灰高温灰化过程中的矿物演变,研究配煤对宁东煤矿区配煤灰熔融特性及黏温特性的影响规律。结果表明,配煤比例与灰熔融特性、灰黏温特性均呈非线性关系。石槽村样煤(SM)与麦垛山煤样(MK)质量比为2∶8时,配煤的灰熔融温度为1 300℃,灰黏度5 Pa·s,基本满足德士古气化炉用煤的煤质要求,该配煤比例下高温灰的矿物组成主要是石英。可见通过配煤可以有效改善煤灰熔融及黏温特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号