共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the study was to determine the effects of feed delivery time and its interactions with dietary concentrate inclusion and parity on milk production and on 24-h averages and patterns of feed intake and blood metabolites. Four multiparous and 4 primiparous lactating Holstein cows were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Experimental periods included 14 d of adaptation and 7 d of sampling. A higher concentrate diet with a forage:concentrate ratio (dry matter basis) of 38:62 or a lower-concentrate diet with a forage:concentrate ratio of 51:49 was delivered at either 0900 or 2100 h. During sampling periods, daily feed intakes, as well as feed intakes during 3-h intervals relative to feed delivery, were determined. During 2 nonconsecutive days of the sampling period, jugular blood was sampled every 2 h. Average temperature and relative humidity in the experimental facility were 20.4°C and 68.1%, and the maximum daily air temperature did not exceed 25°C. This data does not suggest that cows were heat-stressed. Changing feed delivery time from 0900 to 2100 h increased the amount of feed consumed within 3 h after feeding from 27 to 37% of total daily intake but did not affect daily dry matter intake. The cows fed at 2100 h had lower blood glucose at 2 h after feeding but greater blood lactate and β-hydroxybutyrate acid at 2 and 4 h after feeding than cows fed at 0900 h. These effects of feed delivery time on the 24-h patterns in blood metabolites may be caused by the greater feed intake during the 3 h after feed delivery of the cows fed at 2100 h. Daily averages of glucose, urea, lactate, and β-hydroxybutyrate acid and nonesterified fatty acids in peripheral blood were not affected by time of feeding. The change in feed delivery time did not affect milk yield and milk protein but increased milk fat percentage from 2.5 to 2.9% and milk fat yield from 0.98 to 1.20 kg/d in multiparous cows, without affecting milk fat in primiparous cows. The interactions between diet and time of feeding on daily feed intake, milk production, and blood metabolites were not significant. The effects of the time of feed delivery on the 24-h patterns in blood metabolites suggest that this time may affect peripheral nutrient availability. Results of this study suggest beneficial effects of feeding at 2100 h instead of at 0900 h on milk fat production of lactating cows, but parity appears to mediate this effect. 相似文献
2.
K. Pabst W. Mathar R. Palavinskas H. Meisel A. Blü thgen H. Klaffke 《Food Additives & Contaminants》2005,22(3):210-213
During the preparation of cooked foods acrylamide is formed from asparagine and reducing sugars at high temperatures. By-products of oil, starch and sugar production, which may be found in animal feed, partially result from processing steps using heat treatment that are similarly likely to form acrylamide. Possibly, pelletizing during the processing of mixed concentrates may also be involved in acrylamide formation. Thus the occurrence of acrylamide in animal feed and the potential for carry-over into animal products should be tested. Independently of the feed matrix, 1.5 g per day of acrylamide was fed to a cow for ten days resulting in a mean concentration of 175 µg/kg of acrylamide in the milk. From the data obtained the mean carry-over was found to be 0.24%, and a mean half-life time of 2.8 h was estimated. This means acrylamide was rapidly transformed in the cow. The acrylamide concentrations in three commercial mixed concentrates were respectively 180, 145 and 140 µg/kg feed. To test the possible effect of pelletizing, the peripheral zones were separately analysed. No difference in concentration was observed. Based on the carry-over rate estimated in this study, a maximum concentration of approx. 0.2 µg/kg of acrylamide would be expected in milk from cows fed with such feeds. 相似文献
3.
Dänicke S Brüssow KP Valenta H Ueberschär KH Tiemann U Schollenberger M 《Molecular nutrition & food research》2005,49(10):932-943
A total of 36 gilts (103 +/- 6 kg) were divided into four groups and fed diets with increasing proportions of a Fusarium toxin contaminated wheat over a period of 35 days. The concentrations of the indicator toxins deoxynivalenol (DON) and zearalenone (ZON) which were analyzed by HPLC methods were 210 and 4, 3070 and 88, 6100 and 235 and 9570 and 358 mug.kg(-1) diet fed to groups 1-4 respectively. Feed was partially refused during the first 21 days of the experiment by groups 2, 3 and 4 where two, three and six out of nine gilts were affected. No signs of hyperestrogenism or uterotrophic effects were observed due to dietary treatments. Blood serum, urine, bile and liver were analyzed for residues of DON, ZON and their metabolites. DON and its de-epoxidized metabolite (de-epoxy-DON) were detected in all analyzed specimens and increased in a significantly linearly related fashion. Alpha-zearalenol (alpha-ZOL) and beta-ZOL could be detected besides the parent toxin ZON, but only in bile and urine. In conclusion, the impact of dietary treatments on the performance parameters was most pronounced in the highest exposed group. The maximum ratio between DON concentration in liver and diet was 0.0013, and suggests that a possible contamination of pig liver with DON is negligible and does not contribute significantly to human DON exposure. 相似文献
4.
K Seeling S D?nicke K H Uebersch?r P Lebzien G Flachowsky 《Food Additives & Contaminants》2005,22(9):847-855
The aim was to investigate the effect of feeding Fusarium toxin-contaminated wheat to dairy cows on the metabolism and carry over of zearalenone (ZON) and its metabolites at different feed intakes. Fourteen dairy cows equipped with rumen and duodenal fistulae were used. The experiment consisted of a control period in which the uncontaminated wheat was fed and a mycotoxin period in which the Fusarium toxin-contaminated wheat (8.21 mg deoxynivalenol (DON) and 91 microg ZON kg(-1) dry matter (DM)) was replaced by the control wheat (0.25 mg DON kg(-1) and 51 microg ZON kg(-1) DM). The wheat portion of the concentrate fed daily amounted to 55% on a DM basis. The ration was completed with maize and grass silage (50:50), whereby the maize silage contained 62 microg ZON kg(-1) DM. Feed intakes were adjusted to the current performance of the individual cows. The ZON metabolites alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL) were recovered at the duodenum beside the parent toxin ZON. The recovery of ingested ZON as ZON plus alpha-ZOL plus beta-ZOL at the duodenum ranged between 19 and 247%. The portion of ZON (ranging from 29 to 99%) of the ZON plus alpha-ZOL plus beta-ZOL flow at the duodenum increased significantly with increasing ZON feed intake, whereas the portion of beta-ZOL (up to 57%) decreased significantly. In contrast, portions of ZON in faeces (32-100%), alpha-ZOL (up to 39%) and beta-ZOL (up to 43%) of ZON plus alpha-ZOL plus beta-ZOL were independent of ZON intake. It seems that a lower retention time of the feed and the toxins in the rumen as an effect of the increased feed intake may limit the ruminal metabolization of ZON. The relatively steady recovery of ingested ZON as ZON, alpha-ZOL and beta-ZOL in faeces at the different levels of ZON intake would suggest a further reduction of ZON by intestinal microorganisms. Furthermore, ZON and its metabolites in the milk were lower than the detection limits at daily ZON and DM intakes between 75 and 1125 microg and 5.6 and 20.5 kg day(-1), respectively, and milk yields (fat corrected milk, FCM) between 10 and 42 kg day(-1). 相似文献
5.
The objective of the current study was to evaluate feed intake prediction models of varying complexity using individual observations of lactating cows subjected to experimental dietary treatments in periodic sequences (i.e., change-over trials). Observed or previous period animal data were combined with the current period feed data in the evaluations of the different feed intake prediction models. This would illustrate the situation and amount of available data when formulating rations for dairy cows in practice and test the robustness of the models when milk yield is used in feed intake predictions. The models to be evaluated in the current study were chosen based on the input data required in the models and the applicability to Nordic conditions. A data set comprising 2,161 total individual observations was constructed from 24 trials conducted at research barns in Denmark, Finland, Norway, and Sweden. Prediction models were evaluated by residual analysis using mixed and simple model regression. Great variation in animal and feed factors was observed in the data set, with ranges in total dry matter intake (DMI) from 10.4 to 30.8 kg/d, forage DMI from 4.1 to 23.0 kg/d, and milk yield from 8.4 to 51.1 kg/d. The mean biases of DMI predictions for the National Research Council, the Cornell Net Carbohydrate and Protein System, the British, Finnish, and Scandinavian models were −1.71, 0.67, 2.80, 0.83, −0.60 kg/d with prediction errors of 2.33, 1.71, 3.19, 1.62, and 2.03 kg/d, respectively, when observed milk yield was used in the predictions. The performance of the models were ranked the same, using either mixed or simple model regression analysis, but generally the random contribution to the prediction error increased with simple rather than mixed model regression analysis. The prediction error of all models was generally greater when using previous period data compared with the observed milk yield. When the average milk yield over all periods was used in the predictions of feed intake, the increase in prediction error of all models was generally less than when compared with previous period animal data combined with current feed data. Milk yield as a model input in intake predictions can be substantially affected by current dietary factors. Milk yield can be used as model input when formulating rations aiming to sustain a given milk yield, but can generate large errors in estimates of future feed intake and milk production if the economically optimal diet deviates from the current diet. 相似文献
6.
Animal responses to dietary treatment may interact with metabolic state, which differs for cows across a wide range of milk yield. Responses to dietary saturated vs. unsaturated fatty acid (FA) supplement was evaluated using 32 multiparous Holstein cows arranged in a crossover design with 14-d periods. Treatments were 2.5% FA from unsaturated FA (calcium salts of palm FA) or saturated FA (prilled, hydrogenated free FA). Unsaturated FA treatments decreased dry matter intake (0.8 kg/d) and time spent ruminating (25 min/d) compared with saturated FA treatment. Treatments did not differ in milk or 3.5% fat-corrected milk yield. Intake and milk yield responses were not related to milk yield across cows. Saturated FA treatment increased milk protein and lactose concentrations, but treatment did not affect yield of milk components. Saturated FA treatment increased insulin over 25% and decreased nonesterified FA nearly 20% with no effect on plasma somatotropin, glucose, or β-hydroxybutyrate concentrations. Milk protein concentration and yield responses to treatment were positively correlated with pretrial fat-corrected milk yield. Milk protein response was not related to insulin response, supporting the importance of insulin sensitivity in control of milk protein synthesis. Unsaturated FA treatment decreased dry matter intake and rumination time compared with saturated FA treatment, consistent with reports of unsaturated fat increasing satiety and decreasing gut motility. Decreased milk protein synthesis by fat supplementation may be related to FA saturation and milk yield of cows. 相似文献
7.
《Journal of dairy science》2021,104(9):9886-9901
An experiment was conducted to determine the effects of low and high metabolizable protein (MP) diets when fed for ad libitum and controlled intake during the prepartum period on postpartum lactation performance and feeding behavior of dairy cows. Thirty-six multiparous Holstein cows were blocked by parity, expected calving date, and previous lactation milk yield at −21 d relative to expected calving and were randomly assigned to 1 of 4 close-up period dietary treatments providing low MP (LMP) or high MP (HMP) diets with controlled intake (CNI) or ad libitum intake (ALI). The concentrations of MP were 65 and 90 g/kg dry matter for LMP and HMP diets, respectively, whereas intake was controlled to supply 100 and 160% of the NRC (2001) energy requirements for CNI and ALI groups, respectively. The concentration of net energy for lactation (NEL) in the treatment diets was 1.50 Mcal/kg. All cows were fed a similar lactation diet after calving (1.50 Mcal/kg of NEL and 83.3 g/kg of MP). The HMP diet increased dry matter intake during the first 3 wk and tended to increase dry matter intake over the 9 wk of lactation. Meal size and eating rate increased in the ALI cows during the prepartum period. Meal frequency increased with the HMP diet during the postpartum period. Milk yield increased by 15.2% with the HMP diet over the 9 wk of lactation. The HMP diet increased energy-corrected milk (ECM) yield in CNI versus ALI cows, whereas the LMP diet increased ECM yield in ALI versus CNI cows over the 9 wk of lactation. The increase in ECM yield of LMP-ALI versus LMP-CNI cows was supported by greater body condition loss and serum β-hydroxybutyrate over the 9 wk of lactation. Taken together, these data indicate that prepartum controlled intake of a high protein diet can provide the benefits of both strategies. 相似文献
8.
Saturated and unsaturated fatty acid supplements (FS) were evaluated for effects on feed intake, meal patterns, and chewing behavior. Eight ruminally and duodenally cannulated cows were used in a replicated 4 × 4 Latin square design experiment with 21-d periods. Treatments were control and a linear substitution of 2.5% fatty acids from supplemented saturated FS (SAT; prilled, hydrogenated free fatty acids) for partially unsaturated FS (UNS; calcium soaps of long-chain fatty acids). All rations contained identical forage and concentrate components including 37.2% forage and 13.5% cottonseed. Dry matter intake for SAT was not different from control, whereas increasing unsaturated FS linearly decreased dry matter intake by 3.2 kg. Wet weight of ruminal digesta decreased linearly up to 11.3 kg (13%) with increasing unsaturated FS. Adding supplementary fatty acids did not change meal number, meal length, or time between meals compared with control, but increasing unsaturated FS decreased meal size 0.22 kg (9%) within FS. The SAT treatment increased time spent ruminating by 56 (10%) and 42 (7%) min/d compared with control and UNS, respectively. Increasing saturated FS did not affect frequency of rumination bouts or interval between bouts, but increased rumination bout length by 5.6 min. Water intake was not affected by treatment, but increasing saturated FS linearly decreased the number of drinking bouts per day by up to 2.9 bouts (23%). Increased unsaturated fatty acid flow to the duodenum decreased feed intake by decreasing meal size, and increased saturated fatty acid flow to the duodenum increased rumination time per day by increasing rumination bout length. 相似文献
9.
A daily pattern of feed intake, milk synthesis, and plasma metabolites and hormones occurs in dairy cows fed a total mixed ration once or twice a day. The objective of this study was to determine if feeding multiple rations within a day, complementing these rhythms, would improve milk production. Twelve Holstein cows were used in a replicated 3 × 3 Latin square design with 21-d periods. Cows were housed in tie stalls with feed tubs, and feed weight was recorded every 10 s for observation of feeding behavior. Rations were a low fiber and high fermentable starch ration [LFHS; 27.4% neutral detergent fiber (NDF) and 31.7% starch based on 55.7% corn silage and 14.1% steam-flaked corn], a high fiber and low fermentable starch ration (HFLS; 31.7% NDF and 22.3% starch based on 44% corn silage, 26.3% alfalfa haylage, and no steam-flaked corn), and a total mixed ration that was a 1:3 ratio of LFHS and HFLS (30.7% NDF, 24.5% starch). The control treatment (CON) cows were fed the total mixed ration at 0700 h, the high/low treatment (HL) fed HFLS ration at 0700 h and LFHS ration at 2200 h, and the low/high (LH) treatment fed LFHS ration at 0700 h and HFLS ration at 1100 h (LFHS and HFLS rations fed at a 1:3 ratio). No effect was found of treatment on daily milk, but LH decreased milk fat concentration and yield compared with HL (0.2 percentage units and 0.24 kg, respectively). Daily dry matter and NDF intake and total-tract digestibility did not differ between treatments. The HL treatment reduced intake at the morning-conditioned meal after feeding and reduced intake before the evening feeding. A treatment by time of day interaction was found for fecal NDF and indigestible NDF concentration, blood urea nitrogen (BUN), plasma insulin, and fatty acid concentration, and body temperature. The CON and LH treatments increased the daily amplitude of fecal NDF by 1.0 and 1.1 percentage units compared with HL. Plasma insulin was higher in HL than CON at 0100 and 0400 h, but lower at 1300 and 1900 h. Plasma fatty acids were higher for CON than HL at 0700 h and HL was lower than LH at 0400 and 1900 h. Plasma BUN was higher for HL than control at 0100 h, but lower at 1000 h. Body temperature in CON and HL treatments followed a similar diurnal pattern, whereas body temperature for LH was lower than that of HL treatment at 1300 and 2300 h. No daily rhythm was found of fecal indigestible NDF concentration, plasma glucose, or fatty acids detected in the HL treatment, and the amplitude of plasma insulin and BUN was lower for HL compared with CON (70 and 60% decrease, respectively). In conclusion, feeding 2 rations that differ in fiber and fermentable starch modifies diurnal rhythms in dairy cows. Furthermore, feeding a high fiber and low fermentable starch ration during the high intake period of the day may stabilize nutrient absorption across the day. 相似文献
10.
11.
《Journal of dairy science》2022,105(3):2201-2214
The objective of this study was to determine growth, feed intake, and feed efficiency of postbred dairy heifers with different genomic residual feed intake (RFI) predicted as a lactating cow when offered diets differing in energy density. Postbred Holstein heifers (n = 128, ages 14–20 mo) were blocked by initial weight (high, medium-high, medium-low, and low) with 32 heifers per block. Each weight block was sorted by RFI (high or low) to obtain 2 pens of heifers with high and low genomically predicted RFI within each block (8 heifers per pen). Low RFI heifers were expected to have greater feed efficiency than high RFI heifers. Dietary treatments consisted of a higher energy control diet based on corn silage and alfalfa haylage [HE; 62.7% total digestible nutrients, 11.8% crude protein, and 45.6% neutral detergent fiber; dry matter (DM) basis], and a lower energy diet diluted with straw (LE; 57.0% total digestible nutrients, 11.7% crude protein, and 50.1% neutral detergent fiber; DM basis). Each pen within a block was randomly allocated a diet treatment to obtain a 2 × 2 factorial arrangement (2 RFI levels and 2 dietary energy levels). Diets were offered in a 120-d trial. Dry matter intake by heifers was affected by diet (11.0 vs. 10.0 kg/d for HE and LE, respectively) but not by RFI or the interaction of RFI and diet. Daily gain was affected by the interaction of RFI and diet, with low RFI heifers gaining more than high RFI heifers when fed LE (0.94 vs. 0.85 kg/d for low and high RFI, respectively), but no difference for RFI groups when fed HE (1.16 vs. 1.19 kg/d for low and high RFI, respectively). Respective feed efficiencies were improved for low RFI compared with high RFI heifers when fed LE (10.6 vs. 11.8 kg of feed DM/kg of gain), but no effect of RFI was found when fed HE (9.4 vs. 9.5 kg of DM/kg of gain for high and low RFI, respectively). No effect of RFI or diet on first-lactation performance through 150 DIM was observed. Based on these results, the feed efficiency of heifers having different genomic RFI may be dependent on diet energy level, whereby low RFI heifers utilized the LE diet more efficiently. The higher fiber straw (LE) diet controlled intake and maintained more desirable heifer weight gains. This suggests that selection for improved RFI in lactating cows may improve feed efficiency in growing heifers when fed to meet growth goals of 0.9 to 1.0 kg of gain/d. 相似文献
12.
Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk 总被引:1,自引:0,他引:1
The present study explored the effectiveness of Fourier transform mid-infrared (FT-IR) spectral profiles as a predictor for dry matter intake (DMI) and residual feed intake (RFI). The partial least squares regression method was used to develop the prediction models. The models were validated using different external test sets, one randomly leaving out 20% of the records (validation A), the second randomly leaving out 20% of cows (validation B), and a third (for DMI prediction models) randomly leaving out one cow (validation C). The data included 1,044 records from 140 cows; 97 were Danish Holstein and 43 Danish Jersey. Results showed better accuracies for validation A compared with other validation methods. Milk yield (MY) contributed largely to DMI prediction; MY explained 59% of the variation and the validated model error root mean square error of prediction (RMSEP) was 2.24 kg. The model was improved by adding live weight (LW) as an additional predictor trait, where the accuracy R2 increased from 0.59 to 0.72 and error RMSEP decreased from 2.24 to 1.83 kg. When only the milk FT-IR spectral profile was used in DMI prediction, a lower prediction ability was obtained, with R2 = 0.30 and RMSEP = 2.91 kg. However, once the spectral information was added, along with MY and LW as predictors, model accuracy improved and R2 increased to 0.81 and RMSEP decreased to 1.49 kg. Prediction accuracies of RFI changed throughout lactation. The RFI prediction model for the early-lactation stage was better compared with across lactation or mid- and late-lactation stages, with R2 = 0.46 and RMSEP = 1.70. The most important spectral wavenumbers that contributed to DMI and RFI prediction models included fat, protein, and lactose peaks. Comparable prediction results were obtained when using infrared-predicted fat, protein, and lactose instead of full spectra, indicating that FT-IR spectral data do not add significant new information to improve DMI and RFI prediction models. Therefore, in practice, if full FT-IR spectral data are not stored, it is possible to achieve similar DMI or RFI prediction results based on standard milk control data. For DMI, the milk fat region was responsible for the major variation in milk spectra; for RFI, the major variation in milk spectra was within the milk protein region. 相似文献
13.
《Journal of dairy science》2019,102(7):6131-6143
Residual feed intake (RFI) is an estimate of animal feed efficiency, calculated as the difference between observed and expected feed intake. Expected intake typically is derived from a multiple regression model of dry matter intake on energy sinks, including maintenance and growth in growing animals, or maintenance, gain in body reserves, and milk production in lactating animals. The best period during the production cycle of a dairy cow to estimate RFI is not clear. Here, we characterized RFI in growing Holstein heifers (RFIGrowth; ∼10 to 14 mo of age; n = 226) and cows throughout a 305-d lactation (RFILac-Full; n = 118). The goals were to characterize relationships between RFI estimated at different production stages of the dairy cow; determine effects of selection for efficiency during growth on subsequent lactation and feed efficiency; and identify the most desirable testing scheme for RFILac-Full. For RFIGrowth, intake was predicted from multiple linear regression of metabolizable energy (ME) intake on mid-test body weight (BW)0.75 and average daily gain (ADG). For RFILac-Full, predicted intake was based on regression of BW0.75, ADG, and energy-corrected milk yield. Mean energy intake of the least and most efficient growing heifers (±0.5 standard deviations from mean RFIGrowth of 0) differed by 3.01 Mcal of ME/d, but the groups showed no difference in mid-test BW or ADG. Phenotypic correlation between RFIGrowth and RFI of heifers estimated in the first 100 d in milk (RFILac100DIM; n = 130) was 0.37. Ranking of these heifers as least (mean + 0.5 standard deviations), middle, or most efficient (mean – 0.5 standard deviations) based on RFIGrowth resulted in 43% maintaining the same ranking by RFILac100DIM. On average, the most efficient heifers ate 3.27 Mcal of ME/d less during the first 100 DIM than the least efficient heifers, but exhibited no differences in average energy-corrected milk yield, ADG, or BW. The correlation between RFILac100DIM and RFILac-Full was 0.72. Thus, RFIGrowth may serve as an indicator trait for RFI during lactation, and selection for heifers exhibiting low RFIGrowth should improve overall herd feed efficiency during lactation. Correlation analysis between RFILac-Full (10 to 305 DIM) and subperiod estimates of RFI during lactation indicated a test period of 64 to 70 d in duration occurring between 150 to 220 DIM provided a reliable approximation (r ≥ 0.90) of RFILac-Full among the test periods evaluated. 相似文献
14.
Effects of rumen-protected choline and dry propylene glycol on feed intake and blood parameters for Holstein dairy cows in early lactation 总被引:1,自引:0,他引:1
Y.-H. Chung 《Journal of dairy science》2009,92(6):2729-2736
A 6 × 6 Latin square design was used to test 3 sets of comparisons simultaneously to study response in dry matter intake, milk yield, and blood parameters to propylene glycol (PG) supplementation delivered by 2 methods [incorporating PG into the total mixed ration (TMR) vs. top dressing; comparison I]; individual or combined dietary choline and PG supplementation as a 2 × 2 factorial (comparison II); or increasing amounts of dietary choline (comparison III). Six multiparous (lactation number = 1.5 ± 0.8 SD) Holstein dairy cows were at 41 d in milk (± 9 SD) at the start of the experiment. Propylene glycol used was a dry product containing 65% PG, and choline was a rumen-protected choline product (RPC; estimated to be 50% rumen-protected) containing 50% choline chloride. In comparison I, treatments compared were 1) control: no PG; 2) PG-TMR: 250 g/d of dry PG (corresponding to 162.5 g/d of PG) incorporated into the TMR; and 3) PG-top dress: 250 g/d of dry PG top-dressed onto the TMR. In comparison II, treatments compared were 1) control: no PG and no RPC; 2) PG: 250 g/d of dry PG incorporated into the TMR; 3) RPC: 50 g/d of RPC top-dressed onto the TMR; and 4) PG + RPC: combination of treatments 2 and 3. In comparison III, treatments compared were 0, 25, and 50 g/d of RPC top-dressed onto the TMR. Each experimental period lasted 10 d with 9 d of adaptation followed by 1 d of serial blood sampling. Dry matter intake and milk yield were recorded daily. During the serial blood sampling, jugular blood was sampled every 20 min for the first 4 h and at 8 and 12 h after treatment administration. Results obtained from comparison I showed that feeding 250 g/d of PG as a dry product decreased plasma β-hydroxybutyrate (BHBA) concentration (mean ± SEM) from 701 ± 81 (control) to 564 ± 76 μmol/L without affecting serum insulin, plasma glucose, or plasma nonesterified fatty acid concentrations. Top-dressing PG decreased plasma BHBA concentrations more than by incorporating it into the TMR [527 vs. 601 μmol/L (± 81 pooled SEM)]. Results obtained from comparison II showed that supplementing choline as RPC, PG, or both had no effect on dry matter intake, milk yield, or any of the blood parameters measured. Results obtained from comparison III showed that milk yield tended to increase linearly with increasing amounts of dietary choline as RPC. We concluded that feeding PG as a dry product reduced plasma BHBA concentration but top-dressing PG was more efficient at reducing plasma BHBA level than incorporating PG into the TMR. Dietary choline as RPC tended to increase milk yield linearly. However, a combined effect of dietary PG and choline was not evident and therefore not beneficial. 相似文献
15.
Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows 总被引:1,自引:0,他引:1
Feed intake is one of the most important components of feed efficiency in dairy systems. However, it is a difficult trait to measure in commercial operations for individual cows. Milk spectrum from mid-infrared spectroscopy has been previously used to predict milk traits, and could be an alternative to predict dry matter intake (DMI). The objectives of this study were (1) to evaluate if milk spectra can improve DMI predictions based only on cow variables; (2) to compare artificial neural network (ANN) and partial least squares (PLS) predictions; and (3) to evaluate if wavelength (WL) selection through Bayesian network (BN) improves prediction quality. Milk samples (n = 1,279) from 308 mid-lactation dairy cows [127 ± 27 d in milk (DIM)] were collected between 2014 and 2016. For each milk spectra time point, DMI (kg/d), body weight (BW, kg), milk yield (MY, kg/d), fat (%), protein (%), lactose (%), and actual DIM were recorded. The DMI was predicted with ANN and PLS using different combinations of explanatory variables. Such combinations, called covariate sets, were as follows: set 1 (MY, BW0.75, DIM, and 361 WL); set 2 [MY, BW0.75, DIM, and 33 WL (WL selected by BN)]; set 3 (MY, BW0.75, DIM, and fat, protein, and lactose concentrations); set 4 (MY, BW0.75, DIM, 33 WL, fat, protein, and lactose); set 5 (MY, BW0.75, DIM, 33 WL, and visit duration in the feed bunk); set 6 (MY, DIM, and 33 WL); set 7 (MY, BW0.75, and DIM); set-WL (included 361 WL); and set-BN (included just 33 selected WL). All models (i.e., each combination of covariate set and fitting approach, ANN or PLS) were validated with an external data set. The use of ANN improved the performance of models 2, 5, 6, and BN. The use of BN combined with ANN yielded the highest accuracy and precision. The addition of individual WL compared with milk components (set 2 vs. set 3) did not improve prediction quality when using PLS. However, when ANN was employed, the model prediction with the inclusion of 33 WL was improved over the model containing only milk components (set 2 vs. set 3; concordance correlation coefficient = 0.80 vs. 0.72; coefficient of determination = 0.67 vs. 0.53; root mean square error of prediction 2.36 vs. 2.81 kg/d). The use of ANN and the inclusion of a behavior parameter, set 5, resulted in the best predictions compared with all other models (coefficient of determination = 0.70, concordance correlation coefficient = 0.83, root mean square error of prediction = 2.15 kg/d). The addition of milk spectra information to models containing cow variables improved the accuracy and precision of DMI predictions in lactating dairy cows when ANN was used. The use of BN to select more informative WL improved the model prediction when combined with cow variables, with further improvement when combined with ANN. 相似文献
16.
17.
No carry over of unmetabolised deoxynivalenol in milk of dairy cows fed high concentrate proportions
Keese C Meyer U Valenta H Schollenberger M Starke A Weber IA Rehage J Breves G Dänicke S 《Molecular nutrition & food research》2008,52(12):1514-1529
To examine the carry over of deoxynivalenol (DON) and its metabolite de-epoxy DON (DOM-1) in milk, lactating German Holstein cows (n = 13) were fed an isoenergetic total mixed ration in Period 1 with 50% concentrates and 5.3 mg DON/kg dry matter (DM) over 11 wk and were compared with control cows (n = 14). In Period 2 (18 wk), an elevated concentrate proportion was compared to a low concentrate ration by dividing the cows into four Groups (n = 8): Control-30 (30% concentrates), Myco-30 (30% concentrates, 4.4 mg DON/kg DM), Control-60 (60% concentrates) and Myco-60 (60% concentrates, 4.6 mg DON/kg DM). Taken both periods together, no unmetabolised DON was detected in milk samples using the HPLC-UV method. DOM-1 concentrations ranged between below the LOD and 3.2 microg/kg milk in mycotoxin fed cows, while control cows did not excrete any measurable amounts of DOM-1. Regarding the concentrate effects, the carry over of DON as DOM-1 in milk was negligible (between 0.0001 and 0.0011) but significantly higher in Group Myco-30 than in Group Myco-60. This effect may result from an altered bioavailability of DON from maize silage which made up a higher proportion of the daily ration. 相似文献
18.
Tas BM Taweel HZ Smit HJ Elgersma A Dijkstra J Tamminga S 《Journal of dairy science》2005,88(9):3240-3248
The effects of 8 diploid perennial ryegrass (Lolium perenne L.) cultivars on dry matter (DM) intake, DM digestibility, and milk yield (MY) of dairy cows were evaluated in the summer of 2000 and 2001. Each summer, herbage was harvested daily and stall-fed to 12 dairy cows during six 2-wk periods. Six cultivars were fed in 3 periods (1, 3, and 5) according to a double 3 × 3 Latin square design. In the other periods (2, 4, and 6), 2 cultivars were fed in a repeated measurement design. Herbage mass and leaf blades in the sward canopy varied among cultivars, but differences were not consistent between years. The largest differences in herbage composition were found in water-soluble carbohydrate content, followed by crude protein content. only small differences were found in the neutral detergent fiber (NDF) content. A higher water-soluble carbohydrate content was found in 2 cultivars in both years, whereas ranking of cultivars in crude protein and NDF content was not consistent with years. Dry matter intake and MY were not affected by cultivar. In both years, DM digestiblity was high (>77%), with very small differences among cultivars in 2000 (<0.5%) and larger differences in 2001 (up to 4%). This was associated with a delayed heading date in 2001, resulting in larger differences in leaf blades and NDF content among cultivars. It may be concluded that the 8 cultivars used in our experiments do not provide grass breeders with encouraging evidence to include selection criteria for an increased DM intake, DM digestibility, and MY in their grass breeding schemes. 相似文献
19.
Chami C. Amarasinghe Senay Simsek Anita Brûlé-Babel 《Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment》2016,33(7):1254-1264
Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection. 相似文献
20.
Schroeder JW 《Journal of dairy science》2003,86(3):844-851
Twenty-four multiparous Holstein cows averaging 566 +/- 43 kg of body weight and 83 +/- 49 d in lactation were assigned to treatments stratified by age, days in milk, and milk yield to evaluate the effects of feeding increasing levels of wet corn gluten feed (WCGF) on lactational performance and milk composition. Complete diets containing 0, 15, 30, or 45% of the total ration dry matter (DM) as WCGF were formulated to be 17.2% crude protein and 1.72 Mcal of NE(L) per kilogram of DM, and fed twice daily to individual cows in Calan gates for 15 wk. All diets had a positive metabolizable protein balance. WCGF did not alter DM intake, but feed intake variance tended to be more consistent among cows fed 15 and 30% WCGF (DM basis). Weight gain was numerically greatest for those cows receiving 45% WCGF. Efficiency of energy and protein utilization was not different among treatments. Milk components of fat, protein, and casein were not different among treatments. Milk urea nitrogen was greater for cows on WCGF. Serum urea nitrogen was greatest in cows fed diets containing 15 and 45% WCGF. Serum insulin was lowest in the groups receiving 30 and 45% WCGF, but serum glucose and total protein were unaffected. The concentration of the ruminal volatile fatty acid, valerate, was greater in cows on the WCGF diet and highest in cows fed 30% WCGF. Ruminal ammonia was greatest in cows receiving 30% WCGF. It was estimated that 18.6% of the dietary DM fed as WCGF as a replacement for both portions of the concentrate and the forage in similar diets would have maximized milk yield without negatively affecting milk composition or feed efficiency. 相似文献