首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of high-temperature ageing on the creep-rupture properties of cobalt-base L-605 alloys were investigated at 1089 and 1311 K in air. The specimens with serrated grain boundaries and those with normal straight grain boundaries were aged for 1080ksec at 1273 or 1323 K to cause the matrix precipitates of tungsten-rich b c c phase and M6C carbide. The creep-rupture strength of both specimens were improved by the high-temperature ageing. The rupture strength at 1311 K was the highest in the specimens with serrated grain boundaries aged at 1273 K, while the specimens with straight grain boundaries aged at 1273 K of the highest matrix hardness had the highest rupture strength at 1089 K. The high-temperature ageing did not decrease the rupture ductility of specimens. The ruptured specimens with serrated grain boundaries exhibited a ductile grain-boundary fracture surface which consisted of dimple patterns and steps, regardless of whether high-temperature ageing was carried out. The fracture mode of the specimens with straight grain boundaries was changed from the brittle grainboundary fracture to the ductile one similar to that of the specimens with serrated grain boundaries by high-temperature ageing, since large grain-boundary precipitates which gave nucleation sites of dimples were formed during the ageing. The grain-boundary cracks initiated in the early stage of creep (transient creep regime) in both non-aged and aged specimens of L-605 alloys in creep at 1089 and 1311 K, although the time to crack initiation is shorter in the specimens with straight grain boundaries than in those with serrated grain boundaries. Thus, the period of crack growth and linkage occupied most of the rupture life. The strengthening mechanisms of the aged specimens were also discussed.  相似文献   

2.
The effects of high-temperature ageing on creep-rupture properties were studied using cobalt-base superalloys containing about 14–20 wt% tungsten (W) at 1089 K (816 °C) and 1 311 K (1038 °C) in air. A high-temperature ageing for 1080 ks at 1273 K after solution treatment caused grain-boundary and matrix precipitates of W solid solution and carbide phases in these alloys, and grain boundaries were serrated especially in the alloys with higher W content. The high-temperature ageing largely improved the rupture life in the alloys with higher W content, particularly under lower stresses at 1089 K, whereas it caused the creep ductility to decrease a little in the alloy containing 20% W. The high-temperature ageing also improved the rupture life without decreasing creep ductility in these alloys under higher stresses at 1311 K. Under the same ageing conditions of 1080 ks at 1273 K, the initiation of grain-boundary cracks was retarded in the solution-treated and aged specimens, as well as in the aged specimens with serrated grain boundaries, for the alloys with higher W content at both 1089 and 1311 K. A large amount of grain-boundary serration also occurred in the non-aged specimens of the alloys with higher W content during creep at 1311 K, and contributed to the strengthening of the alloys. The solution-treated and aged specimen had almost the same rupture strength as the aged specimens with serrated grain boundaries in these cobalt-base alloys. The rupture strength of the solution-treated and aged specimens largely increased with increasing W content under the lower stresses at 1089 K and under the higher stresses at 1311 K. A ductile grain-boundary fracture surface, which was composed of dimples and grain-boundary ledges associated with grain-boundary precipitates, was observed in the solution-treated and aged specimens, as well as in the aged specimens with serrated grain boundaries at both 1089 and 1311 K. The fracture surface of the non-aged specimens was a brittle grain-boundary facet at 1089 K, but it became a ductile grain-boundary fracture surface, as serrated grain boundaries were formed owing to grain-boundary precipitates occurring during creep at 1311 K.  相似文献   

3.
The improvement of creep-rupture properties by serrated grain boundaries is investigated using wrought cobalt-based HS-21 alloys in the temperature range 816 to 1038° C (1500 to 1900°F). Serrated grain-boundaries are produced in the early stage of the grain-boundary reaction (GBR) by a heat treatment. Specimens with serrated grain boundaries have superior creep-rupture properties compared with those with normal straight grain boundaries. The rupture lives of specimens with serrated grain boundaries are more than twice as long as those of specimens with straight grain boundaries. The rupture elongation is considerably improved by serrated grain boundaries especially at lower temperatures. A ductile grain-boundary fracture is observed in specimens with serrated grain boundaries, while brittle grain boundary facets prevail in specimens with straight grain boundaries.  相似文献   

4.
The effect of the grain-boundary microstructures on the creep-rupture properties and the initiation and growth of the grain-boundary cracks was investigated using four kinds of specimen of various grain-boundary microstructures in the cobalt-base HS-21 alloy at 1089 K in air. Both the rupture strength and the creep ductility increased with increasing mean value of the fractal dimension of the grain boundaries, Dgb. The strain to crack initiation was largest in the specimen of the highest value (1.241), while the strain was much the same in the specimens of the Dgb value less than 1.162. This was explained by the local variation in the grain-boundary microstructures in these specimens. The mean value of the fractal dimension of the grain-boundary fracture, Df, was close to the value of Dgb, although the value of Df was a little higher than that of Dgb in the specimens of the lower Dgb values. The fracture appearance changed from a brittle grain-boundary fracture to a ductile one with increasing values of Dgb and Df. The crack-growth rate is the surface-notched specimens decreased with increasing value of Dgb. The threshold stress intensity factor for crack growth was higher in the specimens with the higher Dgb values. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
The fractal dimension of the grain-boundary fracture in high-temperature creep was estimated by the vertical section method on several creep-ruptured specimens of the cobalt-nickel- and iron-based heat-resistant alloys. Grain-boundary microcracks linked to the fracture surface were also taken into account in the present analysis by the box-counting method. In the specimens containing many grain-boundary microcracks linked to the fracture surface, the fractal dimension of the grain-boundary fracture was larger in the scale range of more than about one grain-boundary length than in the scale range less than this length. Thus, there was a cross-over in the fractal dimension of the grain-boundary fracture at about one grain-boundary length in these specimens. In the specimens containing much fewer microcracks, there was no clear cross-over in the fractal dimension of the grain-boundary fracture with regard to the scale of the analysis, irrespective of creep-ductility and grain-boundary configuration of the specimens. The fractal dimension of the grain-boundary fracture was generally larger in specimens with serrated grain boundaries than in specimens with straight grain boundaries in these heat-resistant alloys, because the fractal dimension of the grain boundary and the number of the grain-boundary microcracks were larger in the former specimen. The fractal dimension of the grain-boundary fracture did not tend to converge to unity when the scale of the analysis approached the specimen size. The inclusion of near-specimen size data with regard to the scale of the analysis did not affect the fractal dimension of the grain-boundary fracture in these alloys. Thus, the grain-boundary fracture in the creep-ruptured specimens exhibited a fractal nature, at least in the scale range below specimen size, although there was a cross-over in the fractal dimension of the grain-boundary fracture in specimens containing a large number of grain-boundary microcracks.  相似文献   

6.
The effects of grain boundary configuration and creep conditions on the fractal dimension of the grain boundary fracture (D f) were investigated using commercial cobalt-based heat resistant alloys, namely, HS-21 and L-605 alloys. Creep-rupture experiments were carried out under the initial creep stresses of 19.6–176 MPa in the temperature range from 1089–1422 K in air. The value of D f was larger in specimens with serrated grain boundaries than in those with straight grain boundaries in the HS-21 alloy under the same creep condition, and the difference in the value of D f between these specimens was large in the scale range of the analysis which was less than about one grain boundary length. However, there was almost no difference in the value of D f between the specimens with serrated grain boundaries and those with straight grain boundaries in the L-605 alloy, because there was no obvious difference in the microstructure between these specimens. The value of D f increased with decreasing creep stress in the scale range of the fractal analysis larger than about one grain boundary length in both HS-21 and L-605 alloys, while the stress dependence of D f was larger in the HS-21 alloy. The stress dependence of D f was explained by the stress dependence on the number of grain boundary microcracks linked to the fracture surface. The value of D f estimated in the scale range smaller than about one grain boundary length showed essentially no stress dependence in both L-605 and HS-21 alloys.  相似文献   

7.
The effects of serrated grain boundaries on the creep-rupture properties of wrought cobaltbase HS-21 alloys were investigated at 1311 and 1422 K. The amount of grain-boundary sliding and the initiation and growth of grain-boundary cracks were also examined during creep at 1311 K. Specimens with serrated grain boundaries exhibited longer rupture life and larger rupture ductility than those with straight grain boundaries, but these specimens had almost the same rupture life and rupture ductility under lower stresses at 1422 K, because serrated grain boundaries were also formed in specimens with originally straight grain boundaries. The average amount of grain-boundary sliding during creep at 1311 K increased with time (or with creep strain), but was almost the same in both specimens with serrated grain boundaries and those with straight grain boundaries at the same creep strain. Grain-boundary cracks or voids initiated in the early stage of creep in those specimens at 1311 K. Therefore, the strengthening by serrated grain boundaries at high temperatures above about 1311 K was attributed to the retardation of growth and linkage of grain-boundary cracks and voids.  相似文献   

8.
Recycling of iron and steel becomes an universally important issue from the viewpoint of energy and resource saving. Impurity elements like Sn and Cu tend to accumulate in steels by repeated recycling and remarkably degrade mechanical properties of recycled iron alloys due to segregation-induced intergranular embrittlement. The goal of this work is to study the potential of magnetic annealing for the control of grain boundary segregation and intergranular embrittlement in iron alloy. This paper reports several important findings regarding the effect of magnetic annealing on segregation-induced brittleness in iron-tin alloy. Of particular importance is the observations that the concentration of tin at grain boundaries in iron is decreased by magnetic annealing and fracture toughness of iron-tin alloy is drastically improved to the level as high as pure iron.  相似文献   

9.
Abstract

This investigation has examined intergranular fracture during heat treatment and deformation of an Al–Li–Cu–Mg alloy and of an Al–Li–Cu alloy. When solution treatment of the Al–Li–Cu–Mg alloy was initiated by rapid heating to temperatures ≥ 545°C, non-equilibrium eutectic melting of a grain boundary precipitate phase occurred and the liquid spread along grain boundaries as a thin film. On quenching, intergranular cracks were observed at grain boundaries into which a liquid film had penetrated during solution treatment. For less rapid heating rates, non-equilibrium eutectic melting did not occur and no intergranular cracks were observed after quenching. No evidence of non-equilibrium eutectic melting was observed in the Al–Li–Cu alloy irrespective of the rate of heating to 550°C. During tensile testing of as quenched and quenched and aged specimens of the two alloys, intergranular fracture occurred in most specimens, whether or not non-equilibrium eutectic melting had taken place during solution treatment, indicating that at least one additional mechanism of intergranular fracture was initiated by deformation.

MST/947  相似文献   

10.
Hydrogen embrittlement (HE) tests were carried out on a carbon-manganese pipeline steel having a low sulphur content (<0.01%). It was shown that the susceptibility to HE increased as the microstructures changed from ferrite-pearlite to martensite. In the hydrogenated state the fracture surface of the ferrite-pearlite and ferrite-bainite specimens consisted of small cleavage regions surrounding non-metallic (oxide) inclusions; these were called rosettes and were a characteristic feature of the embrittled state. In hydrogenated martensitic specimens, failure was almost entirely intergranular along prior austenite grain boundaries and cracking of martensitic laths. In the martensitic specimens a relationship between inverse time to failure and prior austenite grain size was established.  相似文献   

11.
The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 °C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.  相似文献   

12.
为了从电子层面揭示Fe—Mn—Cr合金晶间腐蚀的物理本质,采用递归法计算了合金的原子埋置能、格位能、亲和能等电子结构参数,探索合金晶间腐蚀机理。研究表明:Cr在晶内稳定性很低,Cr在晶界和表面稳定性较高,基体中的Cr首先扩散到晶界,并通过晶界扩散至合金的表面。Cr元素减小费米能级差,抑制合金的晶间腐蚀。O-Cr间的亲和能为负数,表明氧与Cr之间有相互作用,生成Cr的氧化物。当氧化膜达到一定厚度可起到保护合金的作用。碳与Cr的亲和能也为负数,且其数值比氧与Cr间的亲和能更负。合金中碳优先与Cr形成化合物,在晶界析出,造成晶界贫Cr,使合金晶间腐蚀加重。  相似文献   

13.
The change in the fractal dimension of the grain boundaries during creep was investigated using an austenitic SUS304 steel at 973 K. The fractal dimension of the grain-boundary surface profile (the fractal dimension of the grain boundaries, D, 1 < D < 2) in the plane parallel to the tensile direction (in the parallel direction) and in the transverse direction, was examined on specimens deformed up to rupture (about 0.30 creep strain). Grain boundaries became serrated and the fractal dimension of the grain boundaries increased with increasing creep strain, because the density of slip lines which formed ledges and steps on grain boundaries increased as the creep strain increased. The increase in the fractal dimension due to creep deformation was slightly larger under the higher stress (118 MPa) than under the lower stress (98 MPa), while the increase of the fractal dimension with strain was a little larger in the specimens tensile-strained at room temperature (293 K) than in the crept specimens. These results were explained by the grain-boundary sliding and the diffusional recovery near grain boundaries, which lowered the increase of the fractal dimension with the creep strain. The fractal dimension of the grain boundaries in the parallel direction was slightly larger than that in the transverse direction in both creep at 973 K and tensile deformation at room temperature, especially at the large strains. This could be correlated with the shape change of the grains by creep or plastic deformation. Grain-boundary cracks were principally initiated at grain-boundary triple junctions in creep, but ledges, steps and carbide precipitates on serrated grain boundaries were not preferential nucleation sites for the cracks.  相似文献   

14.
This paper concentrates on the influences of thermomechanical processing on fracture behaviour of Al-Mg-Si-Cu (AA6061) alloys. Important factors are grain boundary structure and extent of matrix- and grain boundary precipitation. Large grain boundary phases in the as-air-cooled alloy, explains its much smaller fracture strain with respect to the water-quenched alloy. With increasing artificial ageing time, the bulk fracture strain of the air-cooled alloy exhibits a minimum. This is due to grain boundary precipitate growth and coarsening affecting the fraction of strain confined to the grain boundary region. For the recrystallized microstructure aged to peak strength, the fraction of intergranular fracture is much larger for the air-cooled alloy. This can be understood on the basis of a much wider precipitate free zone and a smaller grain boundary precipitate volume fraction for the air-cooled alloy, increasing the fraction of strain confined to the grain boundary region by about one order of magnitude with respect to the water-quenched alloy. A much coarser distribution of intermetallic phases in the extruded microstructure is responsible for a larger degree of slip localization. This enhances the tendency for shear- and intergranular fracture, reducing the ductility and thus the fracture strain with respect to that of the recrystallized microstructure.  相似文献   

15.
为探究珠光体降低高碳高锰钢机械性能的原因,本文采用金相组织分析、机械性能测试和断口微观形貌分析等实验方法,研究了奥氏体基体上含体积分数23%珠光体的ZG120Mn13高碳高锰钢的拉伸性能及其裂纹形核和扩展过程.结果表明:通过时效处理,在奥氏体基体上析出的条状、颗粒状以及沿晶界连续分布的珠光体将使ZG120Mn13钢的强度和塑性大幅度下降.机械性能的降低与其力学行为有关,当基体为单一奥氏体时,裂纹将在大量孪生变形后,在孪晶界、孪晶与晶界交界处形核,并沿孪晶界长大而相互连接、扩展.而奥氏体基体上存在珠光体时,裂纹主要在珠光体团内形核,并通过相邻珠光体间奥氏体的塑性耗竭、切断而得以扩展.  相似文献   

16.
铁素体-珠光体型非调质钢的高周疲劳破坏行为   总被引:1,自引:0,他引:1  
研究了三种碳和钒含量不同的铁素体-珠光型非调质钢的高周疲劳破坏行为,并与调质钢进行了对比.结果表明,铁素体-珠光体型非调质钢的高周疲劳性能与其微观组织特征有关.提高铁素体相硬度,其疲劳极限及疲劳极限比均提高,疲劳极限比最高可达0.60,远高于调质钢的0.50;热轧态粗大的网状铁素体-珠光体组织的疲劳性能较差,低于同等强度水平的高温回火马氏体组织。铁素体-珠光体型非调质钢疲劳破坏机制不同于调质钢,其疲劳裂纹基本上萌生于试样表面的铁素体/珠光体边界,并优先沿着铁素体/珠光体边界扩展;对于同等强度水平的调质钢,不存在像铁素体那样的软相,因而易在试样表层粗大的夹杂物处萌生疲劳裂纹.  相似文献   

17.
Conversion of transgranular to intergranular fracture in NiCr steels   总被引:1,自引:0,他引:1  
The paper is focused on quantification of causes and characteristics that govern the intergranular fracture initiation and propagation of this fracture micromechanism in competition with cleavage one. A NiCr steel of commercial quality and the same steel with an increased content of impurity elements, Sn and Sb, have been used for this investigation. Step cooling annealing was applied in order to induce intergranular embrittlement and brittle fracture initiation in both steels. Standard bend and the pre-cracked Charpy type specimen geometries were both tested in three-point bending to determine the fracture toughness characteristics. Charpy V notch specimens tested statically in three-point bending supported by FEM calculation have been used for local fracture stress and other local parameters determination. Relation of cleavage fracture stress and critical stress for intergranular failure has been followed showing capability of this parameter for quantification of the transgranular/intergranular fracture conversion. In order to characterise the quantitative roughness differences in fracture surfaces fractal analysis was applied. A boundary level of fractal dimension has been determined to be 1.12 for the investigated steel; the fracture surface roughness with a higher value reflects high level of intergranular embrittlement and thus fracture toughness degradation.  相似文献   

18.
Abstract

A study is reported of temper embrittlement and hydrogen embrittlement in a series of model 9Cr–1Mo steel alloys in which the levels of silicon and phosphorus have been varied to separate the formation of the brittle intermetallic (Laves) phase from the segregation of phosphorus during aging. Phosphorus segregation was mildly detrimental to ductility properties, Laves phase formation was more detrimental, and their effects combined produced the most severe loss in ductility. Hydrogen effects were additive to those of aging. In unaged material without silicon enrichment, only M23C6 precipitates were detected, with little phosphorus segregation. With silicon enrichment, phosphorus segregation to lath and grain boundaries was enhanced. This enhancement increased the susceptibility of the materials to hydrogen embrittlement, promoting transgranular cleavage and chisel fracture. In aged material, the high phosphorus alloys showed some grain boundary segregation, but only limited interaction with hydrogen. In the high silicon alloys, the formation of Laves phase was most evident. This enhanced hydrogen embrittlement resulted in extensive chisel, transgranular cleavage, and some intergranular fracture. In the high silicon high phosphorus alloy, both Laves phase formation and phosphorus segregation were evident. This resulted in enhanced susceptibility to hydrogen embrittlement, producing intergranular fracture. Thus, silicon controls the susceptibility to hydrogen embrittlement in unaged alloy by promoting phosphorus segregation and in aged alloy by promoting Laves phase formation. In the aged alloy, segregation of phosphorus can enhance the effect of silicon.

MST/1785  相似文献   

19.
Reheat or stress relief cracking phenomena have been reassessed in 2.25Cr1.5W heat-resistant alloys. During rupture test, time to intergranular failure increases with decreasing temperature and tensile stress and is shorter in the alloy containing a higher bulk content of phosphorus. Also the time to intergranular failure can be expressed by t = t0·σn·exp(Q/RT) where t0 is the proportional constant, n the stress exponent and Q the activation enthalpy. Matrix softening is accelerated under tensile stress and an active carbide growth occurs at grain boundaries oriented normal to the tensile stress direction. Because impurities segregate actively to dimples frequently observed at reheat intergranular fracture surfaces, the dimples are not micro-ductile fracture areas but the grain boundary carbide interfaces. The segregation concentration of the impurities is much higher at the grain boundary carbide interfaces than the carbide-free grain boundaries. The phosphorus segregation at the carbide interfaces of the alloy containing the higher bulk content of phosphorus is mainly replaced by the segregation of nitrogen, tin and tellurium in the alloy containing a lower bulk content of phosphorus. The elevated temperature intergranular cracking under tensile stress occurs finally due to the carbide-free grain boundary cracking following the decohesion of the grain boundary carbide interfaces.  相似文献   

20.
Intergranular embrittlement of Ni-Mo alloys by long-range ordering to Ni4Mo was examined for an off-stoichiometric alloy and a stoichiometric alloy of known impurity contents. Both tensile properties and corrosion resistance in HCl were measured as functions of exposure time at 700°C. Various techniques employed for microstructural characterization and microchemical analysis included analytical electron microscopy, X-ray diffractometry and Auger electron spectroscopy. During exposure at 700°C, the yield-strength maxima in both alloys were reached before the ductility minima. Homogeneous matrix ordering was observed to cause a moderate loss of ductility and the fracture mode remained to be transgranular. However, a considerable loss of ductility, intergranular embrittlement and extensive intergranular corrosion attack were found to be associated with heterogeneous grain-boundary ordering, which occurred by a discontinuous mechanism. Discontinuous ordering resulted in molybdenum-depleted zones alongside grain boundaries as evinced from microchemical analysis and localized corrosion attack. It was concluded that the observed intergranular embrittlement was caused by highly localized deformation in the molybdenum-depleted zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号