首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe the first reported use of a Gram-positive bacterial system for the selection of affinity proteins from large combinatorial libraries displayed on the surface of Staphylococcus carnosus. An affibody library of 3 x 10(9) variants, based on a 58 residue domain from staphylococcal protein A, was pre-enriched for binding to human tumor necrosis factor-alpha (TNF-alpha) using one cycle of phage display and thereafter transferred to the staphylococcal host ( approximately 10(6) variants). The staphylococcal-displayed library was subjected to three rounds of flow-cytometric sorting, and the selected clones were screened and ranked by on-cell analysis for binding to TNF-alpha and further characterized using biosensor analysis and circular dichroism spectroscopy. The successful sorting yielded three different high-affinity binders (ranging from 95 pM to 2.2 nM) and constitutes the first selection of a novel affinity protein using Gram-positive bacterial display. The method combines the simplicity of working with a bacterial host with the advantages of displaying recombinant proteins on robust Gram-positive bacteria as well as using powerful flow cytometry in the selection and characterization process.  相似文献   

2.
Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helical framework and (iii) availability of variable surface loops evolved to inactivate members of the DNase family of bacterial toxins, forming one of the tightest known protein-protein interactions. Here we describe initial cloning and protein expression of Im7 and its cognate partner the 15 kDa DNase domain of the colicin E7. Both proteins were produced efficiently in E.coli, and their in vitro binding interactions were validated using ELISA and biosensor. In order to assess the capacity of the Im7 protein to accommodate extensive loop region modifications, we performed extensive molecular modelling and constructed a series of loop graft variants, based on transfer of the extended CDR3 loop from the IgG1b12 antibody, which targets the gp120 antigen from HIV-1. Loop grafting in various configurations resulted in chimeric proteins exhibiting retention of the underlying framework conformation, as measured using far-UV circular dichroism spectroscopy. Importantly, there was low but measurable transfer of antigen-specific affinity. Finally, to validate Im7 as a selectable scaffold for the generation of molecular libraries, we displayed Im7 as a gene 3 fusion protein on the surface of fd bacteriophages, the most common library display format. The fusion was successfully detected using an anti-Im7 rabbit polyclonal antibody, and the recombinant phage specifically recognized the immobilized DNase. Thus, Im7 scaffold is an ideal protein display scaffold for the future generation and for the selection of libraries of novel binding proteins.  相似文献   

3.
The interactions between tPA domains that are important forcatalysis are poorly understood. We have probed the functionof interdomain interactions by generating tPA variants in whichdomains are duplicated or rearranged. The proteins were expressedin a transient mammalian expression system and tested in vitrofor their ability to activate plasminogen, induce fibrinolysisand bind to a forming fibrin clot. Duplication of the heavychain domains of tPA produced enzymatically active tPA variants,many of which demonstrated similar in vitro amidolytic and fibrinolyticactivity and similar fibrin affinity to the parent molecule.Zymographic analysis of the domain duplication tPA variantsshowed one major active species for each variant. Selectionof the residues duplicated and the interdomain spacing werefound to be critical considerations in the design of tPA variantswith duplicated domains. We also rearranged the domains of tPAsuch that kringle 1 replaced the second kringle domain and viceversa. An analysis of these variants indicates that the firstkringle domain can confer fibrin affinity to a tPA variant andfunction in place of kringle 2. Therefore, in wild-type tPA,the functions of kringle 1 and kringle 2 must be dependent partiallyon their orientation within the heavy chain of the protein.The functional autonomy of the heavy and light chains of tPAis demonstrated by the activity of a tPA variant in which theorder of the heavy and light chains was reversed.  相似文献   

4.
Selection technologies such as phage and ribosome display, which provide a physical linkage between genetic information and encoded polypeptide, are important tools for the engineering of proteins for diagnostic and therapeutic applications. We have recently described a selection strategy called covalent DNA display, in which individual proteins are covalently linked to the cognate encoding DNA template in separate droplets of a water-in-oil emulsion. We here report on the optimization of several experimental steps in covalent DNA display technology, such as the elution conditions and the PCR strategy used for the amplification of selected DNA templates. A PCR assembly strategy was developed, which allows the amplification of the DNA templates over repeated rounds of selection. In addition, we could demonstrate that approximately 50% of the DNA templates form a covalent adduct with the corresponding proteins in the compartments of a water-in-oil emulsion. In model selection experiments, differences in recovery efficiency <100 000 per round of selection could be observed when comparing a specific binding polypeptide with a binder of irrelevant specificity. Furthermore, the optimized protocol was successfully applied for the selection of single domain proteins, capable of specific binding to mouse serum albumin (MSA). A mutant derived from the SH3 domain of the Fyn kinase, with millimolar affinity to MSA, was affinity matured using covalent DNA display and yielded several MSA binding FynSH3 variants with dissociation constants in the 100 nM range.  相似文献   

5.
A robust bacterial display methodology was developed that allows the rapid isolation of peptides that bind to arbitrarily selected targets with high affinity. To demonstrate the utility of this approach, a large library (5 x 10(10) clones) was constructed composed of random 15-mer peptide insertions constrained within a flexible, surface exposed loop of the Escherichia coli outer membrane protein A (OmpA). The library was screened for binding to five unrelated proteins, including targets previously used in phage display selections: human serum albumin, anti-T7 epitope mAb, human C-reactive protein, HIV-1 GP120 and streptavidin. Two to four rounds of enrichment (2-4 days) were sufficient to enrich peptide ligands having high affinity for each of the target proteins. Strong amino acid consensus sequences were apparent for each of the targets tested, with up to seven consensus residues. Isolated peptide ligands remained functional when expressed as insertional fusions within a monomeric fluorescent protein. This bacterial display methodology provides an efficient process for identifying peptide affinity reagents and should be useful in a variety of molecular recognition applications.  相似文献   

6.
Selection and characterization of HER2/neu-binding affibody ligands   总被引:9,自引:0,他引:9  
Affibody® (affibody) ligands that are specific for the extracellulardomain of human epidermal growth factor receptor 2 (HER2/neu)have been selected by phage display technology from a combinatorialprotein library based on the 58 amino acid residue staphylococcalprotein A-derived Z domain. The predominant variants from thephage selection were produced in Escherichia coli, purifiedby affinity chromatography, and characterized by biosensor analyses.Two affibody variants were shown to selectively bind to theextracellular domain of HER2/neu (HER2-ECD), but not to controlproteins. One of the variants, denoted His6-ZHER2/neu:4, wasdemonstrated to bind with nanomolar affinity (  相似文献   

7.
The amino acid sequence of a protein determines both its final folded structure and the folding mechanism by which this structure is attained. The differences in folding behaviour between homologous proteins provide direct insights into the factors that influence both thermodynamic and kinetic properties. Here, we present a comprehensive thermodynamic and kinetic analysis of three homologous homodimeric four-helix bundle proteins. Previous studies with one member of this family, Rop, revealed that both its folding and unfolding behaviour were interesting and unusual: Rop folds (k(0)(f) = 29 s(-1)) and unfolds (k(0)(u) = 6 x 10(-7) s(-1)) extremely slowly for a protein of its size that contains neither prolines nor disulphides in its folded structure. The homologues we discuss have significantly different stabilities and rates of folding and unfolding. However, the rate of protein folding directly correlates with stability for these homologous proteins: proteins with higher stability fold faster. Moreover, in spite of possessing differing thermodynamic and kinetic properties, the proteins all share a similar folding and unfolding mechanism. We discuss the properties of these naturally occurring Rop homologues in relation to previously characterized designed variants of Rop.  相似文献   

8.
The use of random mutagenesis in concert with protein display technologies to rapidly select high affinity antibody variants is an established methodology. In some cases, DNA recombination has been included in the strategy to enable selection of mutations which act cooperatively to improve antibody function. In this study, the impact of L-Shuffling DNA recombination on the eventual outcome of an in vitro affinity maturation has been experimentally determined. Parallel evolution strategies, with and without a recombination step, were carried out and both methods improved the affinity of an anti-Fas single chain variable fragment (scFv). The recombination step resulted in an increased population of affinity-improved variants. Moreover, the most improved variant, with a 22-fold affinity gain, emerged only from the recombination-based approach. An analysis of mutations preferentially selected in the recombined population demonstrated strong cooperative effects when tested in combination with other mutations but small, or even negative, effects on affinity when tested in isolation. These results underline the ability of combinatorial library approaches to explore very large regions of sequence space to find optimal solutions in antibody evolution studies.  相似文献   

9.
Restriction enzymes (REases) are commercial reagents commonly used in DNA manipulations and mapping. They are regarded as very attractive models for studying protein-DNA interactions and valuable targets for protein engineering. Their amino acid sequences usually show no similarities to other proteins, with rare exceptions of other REases that recognize identical or very similar sequences. Hence, they are extremely hard targets for structure prediction and modeling. NlaIV is a Type II REase, which recognizes the interrupted palindromic sequence GGNNCC (where N indicates any base) and cleaves it in the middle, leaving blunt ends. NlaIV shows no sequence similarity to other proteins and virtually nothing is known about its sequence-structure-function relationships. Using protein fold recognition, we identified a remote relationship between NlaIV and EcoRV, an extensively studied REase, which recognizes the GATATC sequence and whose crystal structure has been determined. Using the 'FRankenstein's monster' approach we constructed a comparative model of NlaIV based on the EcoRV template and used it to predict the catalytic and DNA-binding residues. The model was validated by site-directed mutagenesis and analysis of the activity of the mutants in vivo and in vitro as well as structural characterization of the wild-type enzyme and two mutants by circular dichroism spectroscopy. The structural model of the NlaIV-DNA complex suggests regions of the protein sequence that may interact with the 'non-specific' bases of the target and thus it provides insight into the evolution of sequence specificity in restriction enzymes and may help engineer REases with novel specificities. Before this analysis was carried out, neither the three-dimensional fold of NlaIV, its evolutionary relationships or its catalytic or DNA-binding residues were known. Hence our analysis may be regarded as a paradigm for studies aiming at reducing 'white spaces' on the evolutionary landscape of sequence-function relationships by combining bioinformatics with simple experimental assays.  相似文献   

10.
Yeast surface display and sorting by flow cytometry are now widely used to direct the evolution of protein binding such as single-chain antibodies or scFvs. The available commercial yeast display vector pYD1 (Invitrogen) displays the protein of interest flanked on the N-terminus by Aga2, the disulfide of which binds the myristylated surface membrane protein Aga1. We have noted that two anti-CD3epsilon scFvs expressed as fusion proteins suffer a 30- to 100-fold loss of affinity when placed NH(2) terminal to either truncated toxins or human serum albumin. In the course of affinity maturing one of these scFv (FN18) using pYD1 we noted that the affinity towards the ectodomain of monkey CD3epsilongamma was too low to measure. Consequently we rebuilt pYD1 tethering the scFv off the NH(2) terminus of Aga2. This display vector, pYD5, now gave a positive signal displaying FN18 scFv with its ligand, monkey CD3epsilongamma. The apparent equilibrium association constant of the higher affinity scFv directed at human CD3epsilongamma increased approximately 3-fold when displayed on pYD5 compared with pYD1. These data show that for certain yeast-displayed scFvs a carboxy-tethered scFv can result in increased ligand-scFv equilibrium association constants and thereby extend the low range of affinity maturation measurements.  相似文献   

11.
The results of a protein design project are used to comparedifferent predictive strategies with respect to proteinproteininteractions. We have been able to generate variants of humanpancreatic secretory trypsin inhibitor (hPSTI) optimized withrespect to the affinity and specificity for human leukocyteelastase relative to trypsin and chymotrypsin, and in particularchymotrypsin. The extremely strong and specific human leukocyteelastase inhibitors were thus developed in three rounds of mutagenesisand two rounds of 3-D modelling; only 24 variants in total weresynthesized, although variations at seven different amino acidpositions were involved (i.e. from 207 possible variants). Anexcellent elastase inhibitor could be designed with the minimumof two amino acid exchanges. The value of structural modellingand actual structure determination is discussed in the lightof the experimental results of the designed protein variantsand the results of tertiary structure determinations of thefree variant and the inhibitorprotease complex. Particular referenceis given to the strategy to be followed in protein design projectsin general and to the development of protease inhibitors inparticular.  相似文献   

12.
The 144 amino acid gene 5 protein of bacteriophage Pf1 bindstightly and cooperatively to single-stranded DNA during replicationof the phage genome. It has been suggested that aromatic aminoacid side chains are important for this interaction, probablythrough base stacking with the DNA. We have analysed the accessibilityof tyrosine residues in the DNA—protein complex, and theirimportance to the DNA-binding activity of the protein, by chemicalmodification and protection experiments using tetranitromethane.Tyrosines 21, 30 and 55 are surface accessible in the free proteinbut are protected from modification in the complex with phageDNA. Moreover, modification of these residues in the free proteinabolishes the ability to bind to DNA or oligonucleotides, asjudged by fluorescence spectroscopy and gel retardation analysis.Modification of the protein also results in the formation ofan intersubunit covalent cross-link between Tyr55 and Phe76,suggesting that Phe76 is located within the DNA-binding cleftof the protein. It is proposed that residues 17–34 ofthe Pf1 gene 5 protein form a beta-hairpin analogous to the‘DNA-binding wing’ of the fd and Ike gene 5 proteins.We suggest the existence of a single-stranded DNA binding motif,in which Tyr30 of the Pf1 protein is equivalent to the functionallyimportant Tyr26 of the fd gene 5 protein.  相似文献   

13.
Increasing the potency of a cytotoxin with an arginine graft   总被引:1,自引:0,他引:1  
Variants and homologs of bovine pancreatic ribonuclease (RNase A) can exhibit cytotoxic activity. This toxicity relies on cellular internalization of the enzyme. Residues Glu49 and Asp53 form an anionic patch on the surface of RNase A. We find that replacing these two residues with arginine does not affect catalytic activity or affinity for the cytosolic ribonuclease inhibitor (RI) protein. This 'arginine graft' does, however, increase toxicity towards human cancer cells. Appending a nonaarginine domain to this cationic variant results in an additional increase in cytotoxicity, providing one of the most cytotoxic known variants of RNase A. These findings correlate the potency of a ribonuclease with its deliverance of ribonucleolytic activity to the cytosol, and indicate a rational means to enhance the efficacy of ribonucleases and other cytotoxic proteins.  相似文献   

14.
We have engineered human epidermal growth factor (EGF) by directed evolution through yeast surface display for significantly enhanced affinity for the EGF receptor (EGFR). Statistical analysis of improved EGF mutants isolated from randomly mutated yeast-displayed libraries indicates that mutations are biased towards substitutions at positions exhibiting significant phylogenetic variation. In particular, mutations in high-affinity EGF mutants are statistically biased towards residues found in orthologous EGF species. This same trend was also observed with other proteins engineered through directed evolution in our laboratory (EGFR, interleukin-2) and in a meta-analysis of reported results for engineered subtilisin. By contrast, reported loss-of-function mutations in EGF were biased towards highly conserved positions. Based on these findings, orthologous mutations were introduced into a yeast-displayed EGF library by a process we term shotgun ortholog scanning mutagenesis (SOSM). EGF mutants with a high frequency of the introduced ortholog mutations were isolated through screening the library for enhanced binding affinity to soluble EGFR ectodomain. These mutants possess a 30-fold increase in binding affinity over wild-type EGF to EGFR-transfected fibroblasts and are among the highest affinity EGF proteins to be engineered to date. Collectively, our findings highlight a general approach for harnessing information present in phylogenetic variability to create useful genetic diversity for directed evolution. Our SOSM method exploits the benefits of library diversity obtained through complementary methods of error-prone PCR and DNA shuffling, while circumventing the need for acquisition of multiple genes for family or synthetic shuffling.  相似文献   

15.
Yeast display is a powerful tool for increasing the affinity and thermal stability of scFv antibodies through directed evolution. Mammalian calmodulin (CaM) is a highly conserved signaling protein that undergoes structural changes upon Ca(2+) binding. In an attempt to generate conformation-specific antibodies for proteomic applications, a selection against CaM was undertaken. Flow cytometry-based screening strategies to isolate easily scFv recognizing CaM in either the Ca(2+)-bound (Ca(2+)-CaM) or Ca(2+)-free (apo-CaM) states are presented. Both full-length scFv and single-domain VH only clones were isolated. One scFv clone having very high affinity (K(d) = 0.8 nM) and specificity (>1000-fold) for Ca(2+)-CaM was obtained from de novo selections. Subsequent directed evolution allowed the development of antibodies with higher affinity (K(d) = 1 nM) and specificity (>300-fold) for apo-CaM from a parental single-domain clone with both a modest affinity and specificity for that particular isoform. CaM-binding activity was unexpectedly lost upon conversion of both conformation-specific clones into soluble fragments. However, these results demonstrate that conformation-specific antibodies can be quickly and easily isolated by directed evolution using the yeast display platform.  相似文献   

16.
The structures of the single-residue mutants H134Q and Y76Aof bovine pancreatic DNase I have been determined and refinedincluding data to 2.3 and 2.4 Å resolution respectively,by X-ray crystallography. H134 is an essential catalytic residue,while Y76 contributes to the binding of DNA by providing a largevan der Waals contact area that stabilizes the wide minor grooveseen in DNase I-DNA complexes. The mutant proteins, which showstrongly reduced activities of 0.001% (H134Q) and 0.3% (Y76A),were expressed in E.coli and both crystallize in space-groupC2 with almost identical unit cells. The crystal packing schemeis different from that found in wild type crystals grown undervery similar conditions, presumably due to the absence of thecarbohydrate moiety. In both mutants the conformation of theprotein is nearly identical to that of the wild type enzymeand changes are confined to surface loops involved in packing.The disruption of the hydrogen bonds between H134, E78 and Y76in both mutants leads to an increased mobility and positionalshifts in the DNA-binding loop, mainly around residue Y76. Thisin turn may further reduce DNA-binding affinity and, thus, contributeto the low activity. In contrast, symmetry contacts involvingresidues 97–108 lead to a stabilization of the flexibleloop compared to wild type DNase I.  相似文献   

17.
Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.  相似文献   

18.
High-throughput protease assays are used to identify new protease inhibitors which have the potential to become valuable therapeutic products. Antibodies are of great utility as affinity reagents to detect proteolysis products in protease assays, but isolating and producing such antibodies is unreliable, slow and costly. It has been shown previously that PDZ domains can also be used to detect proteolysis products in high-throughput homogeneous assays but their limited natural repertoire restricts their use to only a few peptides. Here we show that directed evolution is an efficient way to create new PDZ domains for detection of protease activity. We report the first use of phage display to alter the specificity of a PDZ domain, yielding three variants with up to 25-fold increased affinity for a peptide cleavage product of HIV protease. Three distinct roles are assigned to the amino acid substitutions found in the selected variants of the NHERF PDZ domain: specific 'beta1-beta3' interaction with ligand residue -1, interactions with ligand residues -4 to -7 and improvement in phage display efficiency. The variants, having affinities as high as 620 nM, display improvements in assay sensitivity of over 5-fold while requiring smaller amounts of reagents. The approach demonstrated here leads the way to highly sensitive reagents for drug discovery that can be isolated more reliably and produced less expensively.  相似文献   

19.
A combinatorial library of an {alpha}-helical bacterial receptor domain   总被引:3,自引:0,他引:3  
The construction and characterization of a combinatorial libraryof a solvent-exposed surface of an -helical domain derived froma bacterial receptor is described. Using a novel solid-phaseapproach, the library was assembled in a directed and successivemanner utilizing single-stranded oligonucleotides containingmultiple random substitutions for the variegated segments ofthe gene fragment The simultaneous substitution of 13 residuesto all 20 possible amino acids was carried out in a region spanning81 nucleotides. The randomization was made in codons for aminoacids that were modelled to be solvent accessible at a surfacemade up from two of the three a-helices of a monovalent Fc-bindingdomain of staphylococcal protein A. After cloning of the PCR-amplifiedlibrary into a phagemid vector adapted for phage display ofthe mutants, DNA sequencing analysis suggested a random distributionof codons in the mutagenized positions. Four members of thelibrary with multiple substitutions were produced in Escherichiacoli as fusions to an albumin-binding affinity tag derived fromstreptococcal protein G. The fusion proteins were purified byhuman serum albumin affinity chromatography and subsequentlycharacterized by SDSelectrophoresis, CD spectroscopy and biosensoranalysis. The analyses showed that the mutant protein A derivativescould all be secreted as soluble full-length proteins. Furthermore,the CD analysis showed that all mutants, except one with a prolineintroduced into helix 2, have secondary structures in closeagreement with the wild-type domain. These results proved thatmembers of this -helical receptor library with multiple substitutionsin the solvent-exposed surface remain stable and soluble inE.coli. The possibility of using this library for a phenotypicselection strategy to obtain artificial antibodies with novelfunctions is discussed.  相似文献   

20.
We tested a disulfide-rich antifreeze protein as a potential scaffold for design or selection of proteins with the capability of binding periodically organized surfaces. The natural antifreeze protein is a beta-helix with a strikingly regular two-dimensional grid of threonine side chains on its ice-binding face. Amino acid substitutions were made on this face to replace blocks of native threonines with other amino acids spanning the range of beta-sheet propensities. The variants, displaying arrays of distinct functional groups, were studied by mass spectrometry, reversed-phase high performance liquid chromatography, thiol reactivity and circular dichroism and NMR spectroscopies to assess their structures and stabilities relative to wild type. The mutants are well expressed in bacteria, despite the potential for mis-folding inherent in these 84-residue proteins with 16 cysteines. We demonstrate that most of the mutants essentially retain the native fold. This disulfide bonded beta-helical scaffold, thermally stable and remarkably tolerant of amino acid substitutions, is therefore useful for design and engineering of macromolecules with the potential to bind various targeted ordered material surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号