首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The paper presents a new naked image detection algorithm. A learning-based chromatic distribution-matching scheme is proposed to determine the image's skin chroma distribution online such that it can tolerate the chromatic deviation coming from special lighting without increasing false alarm. The texture feature, namely coarseness, is used to acquire accurate skin segmentation. The low-level but reliable geometrical constraints and the mug shot exclusion procedure are employed to further examine the skin regions. Experimental results show our method can achieve satisfactory performance for detecting naked images under special lighting conditions.  相似文献   

3.
将二叉决策机制融入到模糊支持向量机分类系统中,对图像进行情感语义层面的分类。其难点在于建立从图像的低阶特征到高层情感语义之间的映射关系,以及合理的参数选择问题。采用与决策树方法相结合,实现了多类分类。实验结果表明,本系统在图像情感分类中具有简单、快速、高效等特点。  相似文献   

4.
根据小波分析多尺度空间的相关性,在模极大值边缘检测的基础上提出一种新的图像边缘检测方法.该方法不需要对图像进行预处理就能较精确的检测出图像的边缘.取相邻尺度的小波系数相乘进行相关计算,在抑制噪声的同时提高边缘的定位精度.方法快捷,算法简便,克服了直接对图像进行模极大值边缘检测造成的误差.实验结果表明,该方法得到了满意的效果.  相似文献   

5.
A Gaussian mixture model (GMM) and Bayesian inferencing based unsupervised change detection algorithm is proposed to achieve change detection on the difference image computed from satellite images of the same scene acquired at different time instances. Each pixel of the difference image is represented by a feature vector constructed from the difference image values of the neighbouring pixels to consider the contextual information. The feature vectors of the difference image are modelled as a GMM. The conditional posterior probabilities of changed and unchanged pixel classes are automatically estimated by partitioning GMM into two distributions by minimizing an objective function. Bayesian inferencing is then employed to segment the difference image into changed and unchanged classes by using the conditional posterior probability of each class. Change detection results are shown on real datasets.  相似文献   

6.
Recent developments in the areas of displacement vector estimation as well as dissimilarity grading by a maximum likelihood ratio can be related to each other quantitatively in such a way that dissimilarity grading is reduced to interframe displacement estimation.  相似文献   

7.
Urban vegetation cover is a critical component in urban systems modeling and recent advances in remote sensing technologies can provide detailed estimates of vegetation characteristics. In the present study we classify urban vegetation characteristics, including species and condition, using an approach based on spectral unmixing and statistically developed decision trees. This technique involves modeling the location and separability of vegetation characteristics within the spectral mixing space derived from high spatial resolution Quickbird imagery for the City of Vancouver, Canada. Abundance images, field based land cover observations and shadow estimates derived from a LiDAR (Light Detection and Ranging) surface model are applied to develop decision tree classifications to extract several urban vegetation characteristics. Our results indicate that along the vegetation-dark mixing line, tree and vegetated ground cover classes can be accurately separated (80% and 94% of variance explained respectively) and more detailed vegetation characteristics including manicured and mixed grasses and deciduous and evergreen trees can be extracted as second order hierarchical categories with variance explained ranging between 67% and 100%. Our results also suggest that the leaf-off condition of deciduous trees produce pixels with higher dark fractions resulting from branches and soils dominating the reflectance values. This research has important implications for understanding fine scale biophysical and social processes within urban environments.  相似文献   

8.
为获取保留图像信息较完好的差异图并得到更好的变化检测结果,提出一种基于自适应脉冲耦合神经网络(PC‐NN)和改进Chan‐Vese (C‐V)模型的非监督的不同时相遥感图像的变化检测算法。用差值法、比值法对两幅遥感图像进行差异图获取;用自适应PCNN图像融合算法对两幅差异图进行融合,获取保留图像信息较好的差异图;用基于改进C‐V模型的分割算法对融合后的差异图进行分割,得到变化检测结果图。实验结果表明,该算法具有很好的变化检测效果,总检测精度较高。  相似文献   

9.
This study evaluated the synergistic use of high spatial resolution multispectral imagery (i.e., QuickBird, 2.4 m) and low-posting-density LIDAR data (3 m) for forest species classification using an object-based approach. The integration of QuickBird multispectral imagery and LIDAR data was considered during image segmentation and the subsequent object-based classification. Three segmentation schemes were examined: (1) segmentation based solely on the spectral image layers; (2) segmentation based solely on LIDAR-derived layers; and (3) segmentation based on both the spectral and LIDAR-derived layers. For each segmentation scheme, objects were generated at twelve different scales in order to determine optimal scale parameters. Six categories of classification metrics were generated for each object based on spectral data alone, LIDAR data alone and the combination of both data sources. Machine learning decision trees were used to build classification rule sets. Quantitative segmentation quality assessment and classification accuracy results showed the integration of spectral and LIDAR data, in both image segmentation and object-based classification, improved the forest classification compared to using either data source independently. Better segmentation quality led to higher classification accuracy. The highest classification accuracy (Kappa = 91.6%) was acquired when using both spectral- and LIDAR-derived metrics based on objects segmented from both spectral and LIDAR layers at scale parameter 250, where best segmentation quality was achieved. Optimal scales were analyzed for each segmentation-classification scheme. Statistical analysis of classification accuracies at different scales revealed that there was a range of optimal scales that provided statistically similar accuracy.  相似文献   

10.
This study focuses on the use of coarse spatial resolution (CR, pixel size about 1 km2) remote sensing data for land cover change detection and qualification. Assuming the linear mixing model for CR pixels, the problem is that both the multitemporal class features and the pixel composition in terms of classes are unknown. The proposed algorithm is then based on the iterative alternate estimation of each unknown variable. At each iteration, the class features are estimated, thanks to the knowledge of the composition of some pixels, and then the pixel composition is re-estimated knowing the class features. The subset of known composition pixels is the subset of pixels where no change has occurred, i.e. the previous land cover map is still valid. It is derived automatically by removing at each iteration the pixels where the new composition estimation disagrees with the former one. Finally, for the final estimation of the pixel composition, a Markovian chain model is used to guide the solution, i.e. the previous land cover map is used as a ‘reminder’ or ‘memory’ term.This approach has been first validated using simulated data with different spatial resolution ratios. Then, the detection of forest change with SPOT/VGT-S10 has been considered as an actual application case. Finally, the method has been applied to change detection on the Val de Saône watershed between the 1980s and 2000. The results obtained from three coarse resolution series, NOAA/AVHRR, SPOT/VGT-S10 and SPOT/VGT-P, have been compared.  相似文献   

11.
This paper presents a novel energy function for active contour models based on autocorrelation function, which is capable of detecting small objects against a cluttered background. In the proposed method, image features are calculated using a combination of short-term autocorrelations (STA) computed from the image pixels to represent region information. The obtained features are exploited to define an energy function for the localized region-based active contour model called normalized accumulated short-term autocorrelation (NASTA). Minimizing this energy function, we can accurately detect small objects in images containing cluttered and textured backgrounds. Moreover, the proposed method provides high robustness against random noise and can precisely locate small objects in noisy backgrounds, difficult to be detected with naked eye. Experimental results indicate remarkable advantages of our approach comparing to existing methods.  相似文献   

12.
In this study, a high accuracy fingerprint classification method is proposed to enhance the performance in terms of efficiency for fingerprint recognition system. The recognition system has been considered as a reliable mechanism for criminal identification and forensic for its invariance property, yet the huge database is the key issue to make the system obtuse. In former works, the pre-classifying manner is an effective way to speed up the process, yet the accuracy of the classification dominates the further recognition rate and processing speed. In this paper, a rule-based fingerprint classification method is proposed, wherein the two features, including the types of singular points and the number of each type of point are adopted to distinguish different fingerprints. Moreover, when fingerprints are indistinguishable, the proposed Center-to-Delta Flow (CDF) and Balance Arm Flow (BAF) are catered for further classification. As documented in the experimental results, a good accuracy rate can be achieved, which endorses the effectiveness of the fingerprint classification scheme for the further fingerprint recognition system.  相似文献   

13.
Remotely sensed images and processing techniques are a primary tool for mapping changes in tropical forest types important to biodiversity and environmental assessment. Detailed land cover data are lacking for most wet tropical areas that present special challenges for data collection. For this study, we utilize decision tree (DT) classifiers to map 32 land cover types of varying ecological and economic importance over an 8000 km2 study area and biological corridor in Costa Rica. We assess multivariate QUEST DTs with unbiased classification rules and linear discriminant node models for integrated vegetation mapping and change detection. Predictor variables essential to accurate land cover classification were selected using importance indices statistically derived with classification trees. A set of 35 variables from SRTM-DEM terrain variables, WorldClim grids, and Landsat TM bands were assessed.

Of the techniques examined, QUEST trees were most accurate by integrating a set of 12 spectral and geospatial predictor variables for image subsets with an overall cross-validation accuracy of 93% ± 3.3%. Accuracy with spectral variables alone was low (69% ± 3.3%). A random selection of training and test set pixels for the entire landscape yielded lower classification accuracy (81%) demonstrating a positive effect of image subsets on accuracy. A post-classification change comparison between 1986 and 2001 reveals that two lowland forest types of differing tree species composition are vulnerable to agricultural conversion. Tree plantations and successional vegetation added forest cover over the 15-year time period, but sometimes replaced native forest types, reducing floristic diversity. Decision tree classifiers, capable of combining data from multiple sources, are highly adaptable for mapping and monitoring land cover changes important to biodiversity and other ecosystem services in complex wet tropical environments.  相似文献   


14.
In this paper we demonstrate a new approach that uses regional/continental MODIS (MODerate Resolution Imaging Spectroradiometer) derived forest cover products to calibrate Landsat data for exhaustive high spatial resolution mapping of forest cover and clearing in the Congo River Basin. The approach employs multi-temporal Landsat acquisitions to account for cloud cover, a primary limiting factor in humid tropical forest mapping. A Basin-wide MODIS 250 m Vegetation Continuous Field (VCF) percent tree cover product is used as a regionally consistent reference data set to train Landsat imagery. The approach is automated and greatly shortens mapping time. Results for approximately one third of the Congo Basin are shown. Derived high spatial resolution forest change estimates indicate that less than 1% of the forests were cleared from 1990 to 2000. However, forest clearing is spatially pervasive and fragmented in the landscapes studied to date, with implications for sustaining the region's biodiversity. The forest cover and change data are being used by the Central African Regional Program for the Environment (CARPE) program to study deforestation and biodiversity loss in the Congo Basin forest zone. Data from this study are available at http://carpe.umd.edu.  相似文献   

15.
针对目前基于贝叶斯或决策树的入侵检测方法存在检测率低、误检率高的问题,提出了一种基于贝叶斯和决策树的入侵检测方法。该检测方法首先采用基于特征相似度的朴素贝叶斯方法对训练集中的样本进行分类,更新每个样本的类值;然后对训练集中的样本再次使用朴素贝叶斯方法进行分类,对存在误分类样本的类采用决策树的信息增益来确定属性划分子类,再对子类进行分类和划分操作;最后建立贝叶斯和决策树的混合模型进行入侵检测。实验结果表明,与单独使用贝叶斯或者决策树的检测方法相比,该检测方法具有较高的检测率。  相似文献   

16.
自动图像标注因其对图像理解和网络图像检索的重要意义,近年来已成为新的热点研究课题.在图像标注的CMRM模型基础上,提出了一种基于词间相关性的CMRM标注方法.该方法提取了标注字之间的词间相关关系,并利用图学习算法,通过将词间相关性矩阵叠加到初始标注矩阵的方法对标注结果进行了改善.利用Corel5k标注图像库中的自然场景图像进行实验.实验结果表明,该方法很好地完成了对测试集图像的自动标注,在查全率与查准率上较CMRM模型有所提高.  相似文献   

17.
设计了一种新的频谱空洞的检测方法,基于谱相关分析的理论,在循环相关匹配滤波器的基础上,采用单通道信号的检测统计量作为统计判据,用Bartlett(巴特利特)窗周期图法进行功率谱估计,并进行了蒙特卡罗仿真.仿真结果表明,在低信噪比的情况下,该检测方案具有良好的检测性能.  相似文献   

18.
Time series of remote sensing imagery or derived vegetation indices and biophysical products have been shown particularly useful to characterize land ecosystem dynamics. Various methods have been developed based on temporal trajectory analysis to characterize, classify and detect changes in ecosystem dynamics. Although time series similarity measures play an important role in these methods, a quantitative comparison of the similarity measures is lacking. The objective of this study was to provide an overview and quantitative comparison of the similarity measures in function of varying time series and ecosystem characteristics, such as amplitude, timing and noise effects. For this purpose, the performance was evaluated for the commonly used similarity measures (D), ranging from Manhattan (DMan), Euclidean (DE) and Mahalanobis (DMah) distance measures, to correlation (DCC), Principal Component Analysis (PCA; DPCA) and Fourier based (DFFT,Dξ,DFk) similarities. The quantitative comparison consists of a series of Monte-Carlo simulations based on subsets of global MODIS Normalized Difference Vegetation index (NDVI) and Enhanced Vegetation Index (EVI) and Leaf Area Index (LAI) data. Results of the simulations reveal four main groups of time series similarity measures with different sensitivities: (i) DMan, DE, DPCA, DFk quantify the difference in time series values, (ii) DMah accounts for temporal correlation and non-stationarity of variance, (iii) DCC measures the temporal correlation, and (iv) the Fourier based DFFT and Dξ show their specific sensitivity based on the selected Fourier components. The difference measures show relatively the highest sensitivity to amplitude effects, whereas the correlation based measures are highly sensitive to variations in timing and noise. The Fourier based measures, finally, depend highly on the signal to noise ratio and the balance between amplitude and phase dominance. The heterogeneity in sensitivity of each D stresses the importance of (i) understanding the time series characteristics before applying any classification of change detection approach and (ii) defining the variability one wants to identify/account for. This requires an understanding of the ecosystem dynamics and time series characteristics related to the baseline, amplitude, timing, noise and variability of the ecosystem time series. This is also illustrated in the quantitative comparison, where the different sensitivities of D for the NDVI, EVI, and LAI data relate specifically to the temporal characteristics of each data set. Additionally, the effect of noise and intra- and interclass variability is demonstrated in a case study based on land cover classification.  相似文献   

19.
提出了一种快速二维最大相关准则阈值分割算法。该方法利用积分和迭代编程技术,避免了数据的重复运算,从而将计算的复杂性从一般二维最大相关准则方法的O(L~4)减少至O(L~2)。实验结果表明,该方法分割效果好,计算效率高,适合实时图像系统的应用。  相似文献   

20.
基于边缘检测的Retinex图像增强算法   总被引:1,自引:0,他引:1  
针对消除背景光照对图像的影响时出现的细节弱化、色彩失真的问题,提出了一种基于边缘检测的Retinex彩色图像增强算法。根据人类视觉特性从图像中提取亮度分量并检测边缘信息,在平滑点和边缘点处采用不同的模板估计背景光照,以避免强边缘处的光晕现象;通过调整图像中的背景光照比例提升局部对比度,并根据反射图像直方图自适应调整全局对比度;利用R、G、B通道及亮度分量的等价变换进行色彩恢复,以保证增强前后图像色调一致。实验结果表明,增强后的图像标准差提升了19.34%,信息熵增大了13.18%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号