首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aiming at the deep desulfurization of the diesel oil, a comparison of the catalytic effects of several Keggin type POMs, including H3PWxMo12?xO40 (x = 1, 3, 6), Cs2.5H0.5PW12O40, and H3PW12O40, was made, using the solution of DBT in normal octane as simulated diesel oil, H2O2 as oxidant, and acetonitrile as extractant. H3PW6Mo6O40 was found to be the best catalyst, with a desulfurization efficiency of 99.79% or higher. Hence, it is promising for the deep desulfurization of actual ODS process. The role of the main factors affecting the process including temperature, O/S molar ratio, initial sulfur concentration, and catalyst dosage, was investigated, whereby the favourable operating conditions were recommended as T = 60 °C, O/S = 15, and a catalyst dosage of 6.93 g (H3PW6Mo6O40)/L (simulated diesel). With the aid of GC–MS analysis, sulfone species was confirmed to be the only product after reaction for 150 min. Furthermore, macro-kinetics of the process catalyzed by H3PW6Mo6O40 was studied, from which the reaction orders were found to be 1.02 to DBT and 0.38 to H2O2, and the activation energy of the reaction was found to be 43.3 kJ/mol. Moreover, the catalyst recovered demonstrated almost the same activity as the fresh.  相似文献   

2.
制备了1-(3-磺酸基)丙基-3-甲基咪唑磷钼酸盐([MIMPS]3PMo12O40)、1-(3-磺酸基)丙基-3-甲基咪唑磷钨酸盐([MIMPS]3PW12O40)和1-(3-磺酸基)丙基-3-甲基吡啶磷钨酸盐([PyPS]3PW12O40)3种杂多酸盐,用于催化柠檬酸和正丁醇合成柠檬酸三丁酯(TBC),考察了各催化剂的催化效果。其中,[MIMPS]3PMo12O40具有最好的催化效果,在其催化下,考察了反应条件对酯化率的影响。结果表明:当醇酸物质的量比为4.5:1.0、反应温度为130℃、反应时间为3.5h、催化剂用量为柠檬酸质量的5%时,酯化率可达98.3%,且催化剂具有较好的重复使用性能,重复使用5次后,酯化率依然保持在94%以上。  相似文献   

3.
To effectively reduce the sulfur content in model fuel, [Bmim]PW/HMS catalyst was synthesized through impregnating the hexagonal mesoporous silica (HMS) support by phosphotungstic acid (HPW) and ionic liquid [Bmim] HSO4. Physical structure characterizations of the catalysts showed that HMS retained mesoporous structure, and [Bmim] PW was well dispersed on the support of HMS. The catalytic activity of the [Bmim]PW/HMS was evaluated in the oxidative desulfurization process, and the optimal reaction conditions including loading of the catalysts, reaction temperature, catalyst amount, O/S (H2O2/sulfur) molar ratio and agitation speed were investigated. Under the optimal reaction conditions, the conversion of benzothiophene (BT), dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) could reach 79%, 98%, 88%, respectively.  相似文献   

4.
In this work, several ionic liquids based on pyridinium cations are prepared. The ionic liquids are employed as phase-transfer catalysts (PTCs) for phase-transfer catalytic oxidation of dibenzothiophene (DBT) dissolved in n-octane. The partition coefficients of DBT between ionic liquids and n-octane are investigated. Then H2O2-formic acid is used as an oxidant and ionic liquids are used as PTCs. The reaction turns to be heterogeneous and desulfurization rate of DBT increased apparently. When IL ([BPy]HSO4) is used as PTC, and the condition are: temperature is 60 °C, time is 60 min, H2O2/sulfur molar ratio (O/S) is 4, the desulfurization rate reaches the maximum (93.3%), and the desulfurization of the real gasoline is also investigated, 87.7% of sulfur contents are removed under optima reaction conditions. The PTC [BPy]HSO4 can be recycled for five times without significant decrease in activity.  相似文献   

5.
Four benzyl‐based ionic liquids (ILs) were synthetized and used for deep desulfurization of model oil and real diesel fuel. The removal efficiencies of benzothiophene (BT) and dibenzothiophene (DBT) with [Bzmim][NTf2] and [Bzmim][SCN] as extractants are higher than that with [Bzmp][NTf2] and [Bzmp][SCN] as extractants. The desulfurization capability follows the Nernst's Law. A reactive extraction mathematical model for desulfurization was established. An oxidative‐extractive two‐step deep desulfurization method was developed. DBT was first oxidized by H2O2 with CH3COOH as catalyst and then the unoxidized DBT and uncrystallized dibenzothiophene sulfoxide (DBTO2) in model oil were extracted by [Bzmim][NTf2], and finally the removal efficiency was 98.4% after one‐stage extraction. Besides, the removal efficiency of 4,6‐DMDBT was 96.4% after oxidation and one‐stage extraction processes. Moreover, the oxidative‐extractive two‐step deep desulfurization method was also effective for desulfurization of diesel fuel. The removal efficiency of sulfur reached up to 96% after oxidation and three‐stage cross‐current extraction processes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4023–4034, 2016  相似文献   

6.
By incorporating H3PW12O40 (HPW) heteropolyacid into mesoporous TUD-1 materials, a series of HPW-TUD-1 catalysts were synthesized. Nitrogen adsorption–desorption isotherm, XRD and FTIR characterizations showed that these catalyst exhibited mesoporous structure, and HPW presented in the catalysts with Keggin structure. The catalytic performances of the HPW-TUD-1 catalysts were tested through the oxidative desulfurization (ODS) process of dibenzothiophene (DBT) model oil. The results showed that the obtained 20HPW-TUD-1 catalyst displayed excellent catalytic activity and recover ability for ODS. The desulfurization rate of DBT reached up to 98.1%, and almost no catalytic activity loss was observed after three recycles of the catalyst.  相似文献   

7.
In this study, the stability and the catalytic activity of an ordered mesoporous SBA-15 immobilized 12-tungstophosphoric acid (H3PW12O40, HPW) in the oxidative desulfurization (ODS) of benzothiophene (BT) and dibenzothiophene (DBT) were improved by a post-synthesis-grafting method. In this method, SBA-15 was functionalized to provide a large number of amine groups for the immobilization of HPW through electrostatic binding with (3-aminopropyl) triethoxysilane (APTES) using triflic acid as a protonated agent. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), N2 adsorption–desorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results show that the structure of functionalized SBA-15 support and the active phase of the HPW remained intact after immobilization. The synthesized PWH3N+-SBA-15 catalyst showed a high catalytic activity for ODS, achieving BT and DBT conversion of 99.9% and 100% with the reaction conditions of reaction temperature of 50?°C, H2O2 dosage of 1?mL, catalyst dosage of 0.03?g, and reaction time 5 and 1?h, respectively. The catalyst also showed a high reusability after up to four cycles, for which the conversion of the fourth reaction was 90.0% for both BT and DBT.  相似文献   

8.
Several polyoxometalates: Na2HPM12O40, H3PM12O40, Na2HPM12O40, (VO)H[PM12O40] and (n-Bu4N)3[PM12O40] (M = Mo and W) as well as (n-Bu4N)3 + x[PW12−xVxO40] (x = 0–3) were synthesized and characterized. Benzothiophene, dibenzothiophene and 4,6-dimethyl-dibenzothiophene were used as model sulfur compounds in gas oil. The oxidation reaction was performed using different polyoxometalates as catalyst and H2O2/acetic acid. The experimental results show that the W-based polyoxometalate catalysts are more active than the Mo catalysts. The oxidation reactivity of the catalysts depends on the type of countercation: Na+ > H+ > (VO)+ > (n-Bu4N)+. In a series of (n-Bu4N)3 + x [PW12−xVxO40] (x = 0–3) the order of catalytic activity is V3 > V2 > V1 > V0. The reactivity order of the sulfur compounds is: dibenzothiophene > 4,6-dimethyldibenzo-thiophene > benzothiophene. The catalytic system in this work was used for the oxidation of gas oil combined with solvent extraction to remove sulfur content in gas oil. Under mild reaction condition, high sulfur removal up to 98% can be achieved with high oil recovery (90%).  相似文献   

9.
In this study, we synthesized a molecular hybrid conductor electrolyte using PWA ([H3PW12O40·nH2O]) and [1-butyl-3-methylimidazole][bis-(fluoromethanesulfonyl) amide] ([BMIM][TFSI]) ionic liquid. The [BMIM][TFSI] ionic liquid can interact with the strongly acidic PWA. The hybrids were hydrophilic, and included some water molecules in the structure of the hybrids. The water molecules remained up to 80 °C, contributing to improve conductivity under an anhydrous N2 atmosphere. The conductivity of PWA-[BMIM][TFSI] hybrid under anhydrous conditions increased from 10−4 S/cm to 0.04 S/cm at 60 °C. The conductivity of the hybrids at each temperature was higher than that of pure PWA and [BMIM][TFSI] under anhydrous condition. It can be due to the protonic carriers.  相似文献   

10.
Xue Jiang  Wenshuai Zhu  Huoming Shu 《Fuel》2009,88(3):431-436
Oxidation of dibenzothiphene (DBT) in model oil with H2O2 using surfactant-type decatungstates Q4W10O32 (Q = (CH3)3NC16H33, (CH3)3NC14H29, (CH3)3NC12H25 and (CH3)3NC10H21) as catalysts was studied. The surfactant-type decatungstates were synthesized and characterized. The suitable reaction condition of deep desulfurization was suggested: n(DBT):n(catalyst):n(H2O2) = 1:0.01:3, 60 °C for 0.5 h, under which the DBT conversion can reach 99.6% with [(CH3)3NC16H33]4W10O32 as catalyst. The length of carbon chains of quaternary ammonium cations played a vital role in the catalytic activity of surfactant-type decatungstates, that is, the longer the carbon chain of quaternary ammonium cation of a catalyst was, the better the activity of this catalyst showed. [(CH3)3NC16H33]4W10O32 exhibited the best catalytic performance and can be recycled for six times without significant decrease in catalytic activity. Using benzothiphene (BT) and 4,6-dimethyldibenzothiphene (4,6-DMDBT) as substrates in model oil, surfactant-type decatungstates also showed high catalytic activity. During desulfurization process, BT conversion can reach 99.6% at 3.25 h, while 99.4% of 4,6-DMDBT conversion reached at 1.25 h, with the temperature of 60 °C under atmospheric pressure. The sulfone can be separated from the oil using N,N-dimethylformamide (DMF) as an extractant, and the sulfur content can be lowered from 1000 to 4 ppm. For real diesel, the sulfur removal can reach 93.5% after five times extraction.  相似文献   

11.
Oxidative dehydrogenation of n-butene to 1,3-butadiene over ZnFe2O4 catalyst mixed with Cs x H3−x PW12O40 heteropolyacid (HPA) was performed in a continuous flow fixed-bed reactor. The effect of Cs x H3−x PW12O40 addition on the catalytic performance of ZnFe2O4 was investigated. Cs x H3−x PW12O40 itself showed very low catalytic performance in the oxidative dehydrogenation of n-butene. However, addition of small amount of Cs x H3−x PW12O40 into ZnFe2O4 enhanced the catalytic performance of ZnFe2O4 catalyst. The catalytic performance of ZnFe2O4-Cs x H3−x PW12O40 mixed catalysts was closely related to the surface acidity of Cs x H3−x PW12O40. Among the catalysts tested, ZnFe2O4-Cs2.5H0.5 PW12O40 mixed catalyst showed the best catalytic performance. Strong acid strength and large surface acidity of Cs2.5H0.5PW12O40 was responsible for high catalytic performance of ZnFe2O4-Cs2.5H0.5PW12O40 mixed catalyst. Thus, Cs2.5H0.5PW12O40 could be utilized as an efficient promoter and diluent in formulating ZnFe2O4 catalyst for the oxidative dehydrogenation of n-butene.  相似文献   

12.
Mesoporous Ta2O5 materials functionalized with both alkyl group and a Keggin-type heteropoly acid, Ta2O5/SiO2-[H3PW12O40/R] (R = Me or Ph), was prepared by a single step sol–gel co-condensation method followed by a hydrothermal treatment in the presence of a triblock copolymer surfactant. The catalytic performance of the resulting multifunctionalized organic–inorganic hybrid materials was evaluated by a direct use of soybean oil for biodiesel production in the presence of 20 wt% myristic acid under atmosphere refluxing, and the influences of the catalyst preparation approaches, functional component loadings, and molar ratios of oil to methanol on the catalytic activity of the Ta2O5/SiO2-[H3PW12O40/R] were studied. In addition, the recyclability of the hybrid materials was evaluated via four catalytic runs. Finally, the network structures of the hybrid materials and the functions of the incorporated alkyl groups on the catalytic activity of the materials were put forward.  相似文献   

13.
Composites based on polydiphenylamine (PDPA) doped with heteropolyanions of H3PW12O40 and single-walled carbon nanotubes (SWNTs) were prepared by electrochemical polymerization of diphenylamine (DPA) on carbon nanotube films deposited onto Pt electrodes. HRTEM studies reveal that the electrochemical polymerization leads to the filling the spaces between tubes which compose the bundles, creating a monolithic film on the Pt electrode. The resulting composites were tested as active materials in supercapacitors. Resonant Raman scattering studies showed that the electropolymerization of DPA in the presence of H3PW12O40 and SWNTs leads to the covalent functionalization of SWNTs with doped PDPA. The covalent functionalization of SWNTs with PDPA doped with H3PW12O40 heteropolyanions was revealed by FTIR spectroscopy, based on the changes in the vibrational features of PDPA and H3PW12O40. These changes included i) a down-shift of the PDPA IR bands, which was attributed to the C–H bending vibrational mode of benzene (B), Caromatic–N, C–C stretching (B) + C–H bending (B) and C–C stretching vibrations of the B ring, from 1174, 1321, 1495 and 1603 cm 1 to 1165, 1313, 1487 and 1599 cm 1, respectively; ii) a change in the peak positions of IR bands associated with the W = O and P-O-W vibration modes of H3PW12O40; and iii) a down-shift of the IR band situated in the spectral range 650–725 cm 1, which was assigned to the inter-ring deformation vibration mode.The characterization of symmetric solid-state supercapacitors was performed for electrodes prepared from i) SWNTs functionalized with PDPA doped with H3PW12O40 heteropolyanions, ii) SWNTs electrochemically decorated with H3PW12O40 heteropolyanions, and iii) PDPA doped with H3PW12O40 heteropolyanions. Preliminary results indicate high discharge capacitance values of up to 157.2 mF/cm2 for SWNTs functionalized with PDPA doped with H3PW12O40 heteropolyanions. The discharge capacitance of this material is superior to those recorded for SWNTs electrochemically decorated with H3PW12O40 heteropolyanions (~ 18.2 mF/cm2) and PDPA doped with H3PW12O40 heteropolyanions (~ 62.1 mF/cm2).  相似文献   

14.
Methods for regenerating H3PW12O40 catalyst in the solvent-free direct preparation of dichloropropanol (DCP) from glycerol and hydrochloric acid gas were investigated. Regenerated H3PW12O40 catalyst was then applied to the solvent-free direct preparation of DCP. In the solvent-free direct preparation of DCP, selectivity for DCP over H3PW12O40 catalyst regenerated by method I (recovery of solid H3PW12O40 catalyst by evaporating homogeneous liquidphase product solution) significantly decreased with increasing recycling run, while that over H3PW12O40 catalyst regenerated by method II (regeneration of H3PW12O40 catalyst by oxidative calcination of solid product recovered by method I) was slightly decreased with no significant catalyst deactivation with respect to recycling run. On the other hand, selectivity for DCP over H3PW12O40 catalyst regenerated by method III (regeneration of H3PW12O40 catalyst by recrystallization and subsequent oxidative calcination of solid product recovered by method II) was the same as that over fresh catalyst without any catalyst deactivation with respect to recycling run. Thus, method III was found to be the most efficient method for the regeneration of H3PW12O40 catalyst.  相似文献   

15.
Nafion stabilized inks of Vulcan XC-72 supported platinum (20 wt.%) nanoparticles (Pt/XC-72) were utilized to produce electrocatalytic films on glassy carbon. The catalysts were modified (activated) with phosphododecatungstic acid H3PW12O40 (PW12). Comparison was made to bare (PW12-free) electrocatalytic films. Electroreduction of dioxygen was studied at 25 °C in 0.5 mol dm−3 H2SO4 electrolyte using rotating disk voltammetry. For the same loading of platinum (≈95 μg cm−2) and for the approximately identical distribution of the catalyst, the reduction of oxygen at a glassy carbon electrode modified with the ink containing PW12 proceeded at ca. 30-60 mV more positive potential (depending on the PW12 content), and the system was characterized by a higher kinetic parameter (rate of heterogeneous electron transfer), when compared to the PW12-free electrocatalyst. Gas diffusion electrodes with Pt/XC-72 supported on carbon paper (Pt loading 1 mg cm−2) were also tested. Under the same experimental conditions, while the exchange current density and the total resistance contribution to polarization components, computed from the galvanostatic polarization curves were found to be clearly higher and lower, respectively, for the ink modified with PW12 relative to the unmodified system. The results demonstrate that addition of heteropolytungstatic acid (together with Nafion) enhances the electrocatalytic activity of platinum towards reduction of oxygen.  相似文献   

16.
《Catalysis communications》2011,13(15):1483-1487
A micellar heteropolyacids (HPAs) catalyst had been prepared using surfactant cetyltrimethyl ammonium bromide (CTAB) and H3PW12O40 as precursors. These micellar [C16H33N(CH3)3]xH3  xPW12O40 had been characterized to be micellar structure and the catalytic activity was evaluated by the hydrolysis of polysaccharides to the reducing sugars. The best catalytic activity was obtained over [C16H33N(CH3)3]H2PW12O40 (abbreviated as (C16TA)H2PW), which showed 100% conversion and 99.6% selectivity within 60 min at 80 °C for hydrolysis of sucrose. And it was also active for the conversion of starch and cellulose. The leaching test showed that the HPA micellar catalysts have an excellent stability and can be used as heterogeneous catalysts for six times.  相似文献   

17.
Keggin-type lacunary polyoxotungstates [PW11O39(H2O)]7  (PW11) and metal-modified [PW11O39(H2O)M]5  (M = Ni2 + or Co2 +) were incorporated into the mesoporous silica pillared clays (MSPC) by a hydrothermal sol–gel method. The resulting materials retain the layered structure of the clay precursor and possess a mesoporous structure. The catalytic performance of the materials was tested using oxidative desulfurization of dibenzothiophene-containing model oil as a probe reaction. The results indicated that PW11-MSPC possess an excellent catalytic performance.  相似文献   

18.
A Fenton‐like catalyst prepared from tetrabutylammonium chloride and ferric trichloride was characterized by Fourier transform infrared, UV‐vis and Raman spectroscopy. The catalyst (C4H9)4NFeCl4 (TBAFeCl4) in an extraction and catalytic oxidative desulfurization (ECODS) system containing H2O2 and the ionic liquid (IL) 1‐decyl‐3‐methylimidazolium tetrafluoroborate ([Dmim]BF4) exhibited high catalytic activity for the removal of dibenzothiophene (DBT) in model diesel. Desulfurization with the Fenton‐like catalyst TBAFeCl4 in ECODS involves the structural distortion of DBT via polarization of the IL and its subsequent oxidation. The catalytic system could be recycled multiple times without significant decrease in desulfurization activity due to the high stability of the system.  相似文献   

19.
The surface environment and structural evolution of silica supported phosphotungstic acid (H3PW12O40) catalysts have been investigated as a function of acid loading. H3PW12O40 clusters are deposited intact upon the silica surface, adopting a Stranksi-Krastanov growth mode forming a two-dimensional adlayer which saturates at 45wt% acid. Intimate contact with the silica support perturbs the local chemical environment of three tungstate centres, which become inequivalent with those in the remaining cluster, suggesting an adsorption mode involving three terminal W==O groups. Above the monolayer, H3PW12O40 clusters form three-dimensional crystallites with physico-chemical properties indistinguishable from those in the bulk heteropoly acid. These H3PW12O40/SiO2 materials are efficient for the solventless isomerisation of α-pinene under mild reaction conditions. Activity scales directly with the number of accessible perturbed tungstate sites at the silica interface; these are the active species.  相似文献   

20.
Keggin ions (PW12O403− (PW12), SiW12O404− (SiW12), H2W12O406− (H2W12)) and TiO2 hybrid thin films were prepared using the layer-by-layer method. Their photocatalytic activities were investigated using gaseous 2-propanol decomposition. All films were transparent in the visible wavelength range. For 2-propanol decomposition, H2W12 was the most effective for the combination with TiO2 despite having the smallest TiO2 deposition amount. The photocatalytic activity of the PW12–TiO2 hybrid film was increased 2.3 times by visible light with UV illumination. This increase was less remarkable for hybrid films of other Keggin ions, suggesting that the visible light excitation of reduced PW12 plays an important role in the enhancement of 2-propanol decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号